Acta Optica Sinica, Volume. 43, Issue 6, 0601011(2023)

An Overview of Spaceborne Atmospheric Wind Field Measurement with Passive Optical Remote Sensing

Yutao Feng1,*... Di Fu1,2, Zengliang Zhao3, Weiguo Zong4, Tao Yu5, Zheng Sheng6 and Yajun Zhu7 |Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, Shaanxi, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Beijing Institute of Applied Meteorology, Beijing 100029, China
  • 4Key Laboratory of Space Weather, National Satellite Meteorological Center (National Center for Space Weather), China Meteorological Administration, Beijing 100081, China
  • 5School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, Hubei, China
  • 6College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, Hunan, China
  • 7State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100088, China
  • show less
    Figures & Tables(22)
    Schematic of spaceborne wind measurement technology based on image target movement detection
    Schematic of atmospheric wind detection based on Doppler frequency shift measurement
    SEVIRI system principle[47]
    Optical principle of the FCI[51]
    Optical principle of the VIIRS[52]
    AIRS optical system[67]
    GIIRS optical system[68]
    Response of an interferometer to Doppler shift of an incident spectral line
    Optical system principle of the WINDII[72]
    SWIFT optical system[73]
    Schematic of PAWS system composition[22]
    HRDI optical system[78]
    Field coupling fiber bundles and imaging schematic of CLIO system[83]
    MIGHTI optical system[90]
    SWIFT-DASH interferometer (grating unglued)[94]
    Prototype of spaceborne broad-band Doppler asymmetric spatial heterodyne interferometer
    Basic principles of space-based Doppler modulation gas correlation technology[96]
    Doppler wind temperature detector (DWTS) configuration based on gas correlation modulation technology[97]
    • Table 1. Parameters summary of representative visible/infrared cloud imaging loads[37-45]

      View table

      Table 1. Parameters summary of representative visible/infrared cloud imaging loads[37-45]

      LoadSatellite and typeLaunch timeSpectral range /μmSpectral channelSubstar resolution /kmTemporal resolutionDetection range /hPa

      Wind speed accuracy /

      (m·s-1

      SEVIRI

      MSG/European

      second generation

      geostationary

      satellite

      20020.4-13.412

      1(VIS)

      3(IR)

      15 min/full disk1000-100

      -2.77-5.24(bias)

      <0.61(NRMS)

      GOES Imager

      GOES-15/US's

      second generation

      geostationary

      satellite

      20100.55-13.75

      1(VIS)

      4(IR)

      30 min/full disk--
      VISSR

      FY-2G/China's first

      generation

      geostationary

      satellite

      20140.55-12.55

      1.25(VIS)

      5(IR)

      30 min/full disk1000-150

      -3-3(bias)

      <6(RMSE)

      AGRI

      FY-4A/China's

      second generation

      geostationary

      satellite

      20160.45-13.814

      0.5-1(VIS)

      2-4(IR)

      15 min/full disk1000-150

      -2-6(bias)

      <8(RMSE)

      AHI

      Himawari-8/9/

      Japanese third

      generation

      geostationary

      satellite

      2014/20160.47-13.316

      0.5-1(VIS)

      2(IR)

      10 min/full disk1100-125

      <1(bias)

      4-6(RMSE)

      ABI

      GOES-R/US's

      second generation

      geostationary

      satellite

      20160.45-13.616

      0.5(VIS)

      1-2(IR)

      5-15 min/full disk1000-1004.31-5.2
      VIIRS

      NOAA-20/ United

      States Joint Polar

      Satellite

      20170.41-12.5220.375 or 0.75

      Global coverage

      twice/day(IR and day/night

      VIS/NIR channel)

      or once/day(VIS)

      Ground

      plane-top of

      troposphere

      4.8-6.3
      FCI

      MTG/European

      third generation

      geostationary

      satellite

      20220.3-13.316

      0.5-1(VIS)

      1-2(IR)

      10 min/Full disk1000-100

      -2.81-3.85(bias)

      <0.62(NRMS)

      AVHRR/3

      European,American

      and joint polar

      satellites

      19980.58-12.561.1

      Global coverage

      twice/day(IR)or

      once/day(VIS)

      --
    • Table 2. Parameters summary of representative infrared hyperspectrometer

      View table

      Table 2. Parameters summary of representative infrared hyperspectrometer

      LoadSatelliteLaunch timeSpectral resolution /cm-1Spectral range /cm-1Spectral channelDetection range /hPa

      Wind speed accuracy /

      (m·s-1

      Wind directionaccuracy /(°)Spatial resolution /km
      GIFTSEO-32004(airborne test only)0.57

      685-1130

      1650-2250

      18351000-400325

      1-2(vertical)

      4(horizontal)

      AIRSAqua20020.65

      649-1136

      1217-1613

      2169-2674

      23781000-2003.531413.5(horizontal)
      CRISSuomi NPP2011

      0.625

      1.25

      2.5

      650-1095

      1210-1750

      2155-2550

      13051000-1005-1014(horizontal)
      GIIRS

      FY-4A

      FY-4B

      20160.625

      700-1130

      1650-2250

      16501000-100216(horizontal)

      MISTiCTM

      Winds

      After 20221.261750-24505801000-100210

      3-4(horizontal)

      1(vertical)

      HyperCubeAfter 20221.26900-13853841000-1003-4
    • Table 3. Parameters summary of representative spaceborne interferometer for atmospheric wind measurement

      View table

      Table 3. Parameters summary of representative spaceborne interferometer for atmospheric wind measurement

      LoadSatelliteLaunch timeStateDetection range /kmDetection accuracyVertical resolution /kmInterferometer type
      FPIOGO-61969Fail100-400—m/s,15 K

      Spherical

      Fabry-Pérot

      interferometer

      FPIDE-21982Success80-20015 m/s10

      Planar Fabry-Pérot

      interferometer

      HRDIUARS1992

      Successful,remarkable

      application results

      10-40

      60-110

      5 m/s5

      Triple etalon

      Fabry-Pérot

      interferometer

      TIDITIMED2001

      Basic success,

      but few data

      60-3003 m/s,5-40 K2

      Fixed plane

      Fabry-Pérot

      interferometer

      WINDIIUARS1992

      Successful,remarkable

      application results

      80-3005 m/s,18-40 K4

      Four-step

      Michelson

      interferometer

      MIGHTIICON2019Success90-3005 m/s,2 K5-10

      Broad-band DASH

      interferometer

    • Table 4. Summary of spaceborne passive optical remote sensing wind measurement techniques

      View table

      Table 4. Summary of spaceborne passive optical remote sensing wind measurement techniques

      Technical systemCloud motion vectorInfrared hyperspectralWind imaging interferometerDoppler modulated gas correlation
      Detection rangeTroposphereTroposphere

      Tropopause,stratosphere,

      mesosphere,and thermosphere

      Atratosphere,mesosphere,and thermosphere
      Wind speed accuracy0.6-6 m/s2-10 m/s3-15 m/s2-10 m/s
      Vertical resolution-1-2 km2-10 km1-2 km
      Horizontal resolution0.5-4 km3-16 km100-200 km10-200 km
      Profile continuityNo profileQuasi continuous profileContinuous profileContinuous profile
      Time coverageDay,nightDay,nightDay,nightDay,night
    Tools

    Get Citation

    Copy Citation Text

    Yutao Feng, Di Fu, Zengliang Zhao, Weiguo Zong, Tao Yu, Zheng Sheng, Yajun Zhu. An Overview of Spaceborne Atmospheric Wind Field Measurement with Passive Optical Remote Sensing[J]. Acta Optica Sinica, 2023, 43(6): 0601011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Jul. 12, 2022

    Accepted: Sep. 26, 2022

    Published Online: Mar. 13, 2023

    The Author Email: Yutao Feng (fytciom@126.com)

    DOI:10.3788/AOS221462

    Topics