Laser & Optoelectronics Progress, Volume. 62, Issue 7, 0730004(2025)

Improved Attention Mechanism MobileNetV2 Network for SERS Classification of Water Pollution

Xueling Li1... Jing Yu1, Haiyang Zhang2, Lu Dong3, Zhengdong Zhang2, Ke Li2, Yaqin Yu2 and Qi Li2,* |Show fewer author(s)
Author Affiliations
  • 1College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, Zhejiang , China
  • 2National Institute of Metrology, China, Beijing 100029, China
  • 3Liaoning Inspection, Examination & Certification Centre, Shenyang 110032, Liaoning , China
  • show less
    Figures & Tables(12)
    Principle of MP_ECA
    Structure of the MobileNetV2_MP_ECA model
    Algorithm framework diagram
    Spectra and wavelet images of five substances before and after pre-processing. Spectra of (a1) pyrene, (b1) naphthalene, (c1) profenofos, (d1) fenitrothion, and (e1) isocarbophos before and after pre-processing; wavelet images of (a2) pyrene, (b2) naphthalene, (c2) profenofos, (d2) fenitrothion, and (e2) isocarbophos
    Iterative accuracies of different models on the validation set
    Comparison of heatmaps for raw spectra, pre-processed spectra, and wavelet images. (a) Raw Raman spectra of five substances; (b) heatmaps for the raw Raman spectra of five substances; (c) pre-processed Raman spectra of five substances; (d) heatmaps for the pre-processed Raman spectra of five substances; (e) wavelet images of five substances; (f) heatmaps for the wavelet images of five substances
    Confusion matrix
    • Table 1. Structural parameters of the MobileNetV2_MP_ECA model

      View table

      Table 1. Structural parameters of the MobileNetV2_MP_ECA model

      LayerConfiguration [expansion coefficient, stride]Input size /(pixel×pixel)Output channelNumber of layer
      Input224×2243
      Convolution+BN+ReLUConv 3×3, stride is 2224×224321
      InvertedResidual[1,1]112×112161
      Block-2 layers[6,2]112×112242
      [6,2]56×56
      Block-2 layers[6,2]56×56322
      [6,2]28×28
      Block-2 layers[6,2]28×28642
      [6,2]14×14
      Block-1 layer[6,1]14×14961
      Block-2 layers[6,2]14×141602
      [6,2]7×7
      Block-1 layer[6,1]7×73201
      Convolution+BN+ReLUConv 3×3, stride is 17×712801
      Global average poolingPool H × W7×712801
      OutputDropout (0.1), Linear1×15
    • Table 2. Hyperparameters setting

      View table

      Table 2. Hyperparameters setting

      HyperparameterValue
      Learning rate0.001
      Batch size64
      Number of epoch50
      OptimizerAdam
      Loss functionCross-entropy loss
    • Table 3. Comparison of MobileNetV2 and models with different attention mechanisms

      View table

      Table 3. Comparison of MobileNetV2 and models with different attention mechanisms

      ModelAccuracy /%P /%R /%F1-score /%Model size /MBParametersFLOPs /MFLOPs
      MobileNetV295.0095.6495.0095.126.081550341228.83
      MobileNetV2_MP_ECA97.8397.8597.8397.836.111550431230.20
      MobileNetV2_ECA96.3396.4496.3396.356.091550371230.20
      MobileNetV2_SE96.0096.0896.0096.017.341874629230.49
      MobileNetV2_CBAM95.6795.9195.6795.717.381879893230.32
    • Table 4. Comparison of different classification models

      View table

      Table 4. Comparison of different classification models

      Data typeModelAccuracy /%P /%R /%F1-score /%Model size /MBParametersFLOPs /MFLOPs
      Wavelet imageMobileNetV2_MP_ECA97.8397.8597.8397.836.111550431230.20
      VGGNet1696.1796.1996.1796.16128.0613428102915466.19
      GoogLeNet95.8396.1095.8395.8822.3058406911456.95
      ResNet3495.5096.9795.5095.5481.36212872373678.23
      DenseNet94.5094.5694.5095.006.6469589812895.99
      EfficientNetV294.3394.4894.3394.367.121866895412.23
      ShuffleNetV293.5093.9893.5093.565.011258729151.69
      Spectral data1D-CNN85.4384.1286.7285.411.20750002320.50
      SVM82.3780.5283.2781.880.0325500
    • Table 5. Model classification accuracies by different input images

      View table

      Table 5. Model classification accuracies by different input images

      InputAccuracy
      Raw spectrum93.50
      Pre-processed spectrum95.47
      Wavelet image97.83
    Tools

    Get Citation

    Copy Citation Text

    Xueling Li, Jing Yu, Haiyang Zhang, Lu Dong, Zhengdong Zhang, Ke Li, Yaqin Yu, Qi Li. Improved Attention Mechanism MobileNetV2 Network for SERS Classification of Water Pollution[J]. Laser & Optoelectronics Progress, 2025, 62(7): 0730004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Oct. 23, 2024

    Accepted: Dec. 25, 2024

    Published Online: Mar. 24, 2025

    The Author Email: Qi Li (liqi@nim.ac.cn)

    DOI:10.3788/LOP242165

    CSTR:32186.14.LOP242165

    Topics