Molecular Plant, Volume. 18, Issue 8, 1390(2025)

A novel OsCRK14-OsRLCK57-MAPK signaling module activates OsbZIP66 to confer drought resistance in rice

Ye Tiantian, Wang Huaijun, Zhang Lingqun, Li Xiaokai, Tu Haifu, Guo Zilong, Gao Tong, Zhang Yu, Ye Ying, Li Bingchen, Yang Weiping, Li Yibo, Lai Xuelei, Dong Faming, Xiong Haiyan, and Xiong Lizhong
References(52)

[1] [1] Bourdais, G., Burdiak, P., Gauthier, A., Nitsch, L., Salojrvi, J., Rayapuram, C., Idnheimo, N., Hunter, K., Kimura, S., Merilo, E., et al.(2015). Large-Scale Phenomics Identifies Primary and Fine-Tuning Roles for CRKs in Responses Related to Oxidative Stress. PLoS Genet.11:e1005373.

[2] [2] Burdiak, P., Rusaczonek, A., Wito, D., Gw, D., and Karpiski, S.(2015). Cysteine-rich receptor-like kinase CRK5 as a regulator of growth, development, and ultraviolet radiation responses in Arabidopsis thaliana. J. Exp. Bot.66:3325-3337.

[3] [3] Busch, W., and Benfey, P.N.(2010). Information processing without brains-the power of intercellular regulators in plants. Development137:1215-1226.

[4] [4] Chang, Y., Fang, Y., Liu, J., Ye, T., Li, X., Tu, H., Ye, Y., Wang, Y., and Xiong, L.(2024). Stress-induced nuclear translocation of ONAC023 improves drought and heat tolerance through multiple processes in rice. Nat. Commun.15:5877.

[5] [5] Chen, Z.(2001). A superfamily of proteins with novel cysteine-rich repeats. Plant Physiol126:473-476.

[6] [6] Chen, Y., Shen, J., Zhang, L., Qi, H., Yang, L., Wang, H., Wang, J., Wang, Y., Du, H., Tao, Z., et al.(2021). Nuclear translocation of OsMFT1 that is impeded by OsFTIP1 promotes drought tolerance in rice. Mol. Plant14:1297-1311.

[7] [7] Chow, C.N., Lee, T.Y., Hung, Y.C., Li, G.Z., Tseng, K.C., Liu, Y.H., Kuo, P.L., Zheng, H.Q., and Chang, W.C.(2019). PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants. Nucleic Acids Res.47:D1155-D1163.

[8] [8] Danquah, A., de Zlicourt, A., Boudsocq, M., Neubauer, J., Frei Dit Frey, N., Leonhardt, N., Pateyron, S., Gwinner, F., Tamby, J.P., Ortiz-Masia, D., et al.(2015). Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana. Plant J.82:232-244.

[9] [9] Furihata, T., Maruyama, K., Fujita, Y., Umezawa, T., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K.(2006). Abscisic aciddependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc. Natl. Acad. Sci. USA103:1988-1993.

[10] [10] Guo, Z., Yang, W., Chang, Y., Ma, X., Tu, H., Xiong, F., Jiang, N., Feng, H., Huang, C., Yang, P., et al.(2018). Genome-Wide Association Studies of Image Traits Reveal Genetic Architecture of Drought Resistance in Rice. Mol. Plant11:789-805.

[11] [11] He, Y., Zhu, M., Wang, L., Wu, J., Wang, Q., Wang, R., and Zhao, Y.(2018). Programmed Self-Elimination of the CRISPR/Cas9 Construct Greatly Accelerates the Isolation of Edited and Transgene-Free Rice Plants. Mol. Plant11:1210-1213.

[12] [12] Hobo, T., Asada, M., Kowyama, Y., and Hattori, T.(1999). ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J.19:679-689.

[13] [13] Hunter, K., Kimura, S., Rokka, A., Tran, H.C., Toyota, M., Kukkonen, J.P., and Wrzaczek, M.(2019). CRK2 Enhances Salt Tolerance by Regulating Callose Deposition in Connection with PLD1. Plant Physiol.180:2004-2021.

[14] [14] Kagaya, Y., Hobo, T., Murata, M., Ban, A., and Hattori, T.(2002). Abscisic acid-induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. Plant Cell14:3177-3189.

[15] [15] Kang, L., Teng, Y., Cen, Q., Fang, Y., Tian, Q., Zhang, X., Wang, H., Zhang, X., and Xue, D.(2022). Genome-Wide Identification of R2R3-MYB Transcription Factor and Expression Analysis under Abiotic Stress in Rice. Plants11:1928.

[16] [16] Kimura, S., Hunter, K., Vaahtera, L., Tran, H.C., Citterico, M., Vaattovaara, A., Rokka, A., Stolze, S.C., Harzen, A., Meiner, L., et al.(2020). CRK2 and C-terminal Phosphorylation of NADPH Oxidase RBOHD Regulate Reactive Oxygen Species Production in Arabidopsis. Plant Cell32:1063-1080.

[17] [17] Kobayashi, Y., Murata, M., Minami, H., Yamamoto, S., Kagaya, Y., Hobo, T., Yamamoto, A., and Hattori, T.(2005). Abscisic acidactivated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J.44:939-949.

[18] [18] Kornev, A.P., Haste, N.M., Taylor, S.S., and Eyck, L.F.T.(2006). Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc. Natl. Acad. Sci. USA103:17783-17788.

[19] [19] Lee, D.S., Kim, Y.C., Kwon, S.J., Ryu, C.M., and Park, O.K.(2017). The Arabidopsis Cysteine-Rich Receptor-Like Kinase CRK36 Regulates Immunity through Interaction with the Cytoplasmic Kinase BIK1. Front. Plant Sci.8:1856.

[20] [20] Li, G.J., Chen, K., Sun, S., and Zhao, Y.(2024). Osmotic signaling releases PP2C-mediated inhibition of Arabidopsis SnRK2s via the receptor-like cytoplasmic kinase BIK1. EMBO J.43:6076-6103.

[21] [21] Li, W., Yan, J., Zhang, Y., Zhang, F., Guan, Z., Yao, Y., Chang, Y., Tu, H., Li, X., Wang, H., et al.(2023). Serine protease NAL1 exerts pleiotropic functions through degradation of TOPLESS-related corepressor in rice. Nat. Plants9:1130-1142.

[22] [22] Li, Z., Ao, Y., Feng, D., Liu, J., Wang, J., Wang, H.B., and Liu, B.(2017). OsRLCK 57, OsRLCK107 and OsRLCK118 Positively Regulate Chitin-and PGN-Induced Immunity in Rice. Rice10:6.

[23] [23] Liang, X., and Zhou, J.M.(2018). Receptor-Like Cytoplasmic Kinases: Central Players in Plant Receptor Kinase-Mediated Signaling. Annu. Rev. Plant Biol.69:267-299.

[24] [24] Lu, K., Liang, S., Wu, Z., Bi, C., Yu, Y.T., Wang, X.F., and Zhang, D.P.(2016). Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance. J. Exp. Bot67:5009-5027.

[25] [25] Lu, D., Wu, S., Gao, X., Zhang, Y., Shan, L., and He, P.(2010). A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc. Natl. Acad. Sci. USA107:496-501.

[26] [26] Ma, H., Li, J., Ma, L., Wang, P., Xue, Y., Yin, P., Xiao, J., and Wang, S.(2021). Pathogen-inducible OsMPKK10.2-OsMPK6 cascade phosphorylates the Raf-like kinase OsEDR1 and inhibits its scaffold function to promote rice disease resistance. Mol. Plant14:620-632.

[27] [27] Mitula, F., Tajdel, M., Ciela, A., Kasprowicz-Maluki, A., Kulik, A., Babula-Skowroska, D., Michalak, M., Dobrowolska, G., Sadowski, J., and Ludwikw, A.(2015). Arabidopsis ABA-Activated Kinase MAPKKK18 is Regulated by Protein Phosphatase 2C ABI1 and the Ubiquitin-Proteasome Pathway. Plant Cell Physiol.56:2351-2367.

[28] [28] Ning, J., Li, X., Hicks, L.M., and Xiong, L.(2010). A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol.152:876-890.

[29] [29] O'Malley, R.C., Huang, S.S.C., Song, L., Lewsey, M.G., Bartlett, A., Nery, J.R., Galli, M., Gallavotti, A., and Ecker, J.R.(2016). Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape. Cell165:1280-1292.

[30] [30] Pitzschke, A.(2015). Modes of MAPK substrate recognition and control. Trends Plant Sci.20:49-55.

[31] [31] Saintenac, C., Cambon, F., Aouini, L., Verstappen, E., Ghaffary, S.M.T., Poucet, T., Marande, W., Berges, H., Xu, S., Jaouannet, M., et al.(2021). A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch. Nat. Commun.12:433.

[32] [32] Shen, J., Liu, J., Xie, K., Xing, F., Xiong, F., Xiao, J., Li, X., and Xiong, L.(2017). Translational repression by a miniature inverted-repeat transposable element in the 3' untranslated region. Nat. Commun.8:14651.

[33] [33] Shiu, S.H., and Bleecker, A.B.(2001). Plant receptor-like kinase gene family: diversity, function, and signaling. Sci. STKE2001:re22.

[34] [34] Tanaka, H., Osakabe, Y., Katsura, S., Mizuno, S., Maruyama, K., Kusakabe, K., Mizoi, J., Shinozaki, K., and Yamaguchi-Shinozaki, K.(2012). Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. Plant J.70:599-613.

[35] [35] Tang, N., Zhang, H., Li, X., Xiao, J., and Xiong, L.(2012). Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol.158:1755-1768.

[36] [36] Tian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z., Xu, W., and Su, Z.(2017). agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res.45:W122-W129.

[37] [37] Wang, J., Wang, J., Li, J., Shang, H., Chen, X., and Hu, X.(2021). The RLK protein TaCRK10 activates wheat high-temperature seedling-plant resistance to stripe rust through interacting with TaH2A.1. Plant J.108:1241-1255.

[38] [38] Wang, L., Chen, J., Zhao, Y., Wang, S., and Yuan, M.(2022). OsMAPK6 phosphorylates a zinc finger protein OsLIC to promote downstream OsWRKY30 for rice resistance to bacterial blight and leaf streak. J. Integr. Plant Biol.64:1116-1130.

[39] [39] Xie, K., Minkenberg, B., and Yang, Y.(2015). Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. USA112:3570-3575.

[40] [40] Xing, Y., Jia, W., and Zhang, J.(2008). AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J.54:440-451.

[41] [41] Xu, R., Duan, P., Yu, H., Zhou, Z., Zhang, B., Wang, R., Li, J., Zhang, G., Zhuang, S., Lyu, J., et al.(2018). Control of Grain Size and Weight by the OsMKKK10-OsMKK4-OsMAPK6 Signaling Pathway in Rice. Mol. Plant11:860-873.

[42] [42] Yadeta, K.A., Elmore, J.M., Creer, A.Y., Feng, B., Franco, J.Y., Rufian, J.S., He, P., Phinney, B., and Coaker, G.(2017). A Cysteine-Rich Protein Kinase Associates with a Membrane Immune Complex and the Cysteine Residues Are Required for Cell Death. Plant Physiol.173:771-787.

[43] [43] Yang, W., Guo, Z., Huang, C., Duan, L., Chen, G., Jiang, N., Fang, W., Feng, H., Xie, W., Lian, X., et al.(2014). Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat. Commun.5:5087.

[44] [44] Ye, T., Wang, H., An, C., Tu, H., Zhang, L., Hu, D., Xiong, H., and Xiong, L.(2024). An expanded cysteine-rich receptor-like kinase gene cluster functionally differentiates in drought, cold, heat, and pathogen stress responses in rice. Plant Biotechnol. J.22:2672-2674.

[45] [45] Zeiner, A., Colina, F.J., Citterico, M., and Wrzaczek, M.(2023). CYSTEINE-RICH RECEPTOR-LIKE PROTEIN KINASES: their evolution, structure, and roles in stress response and development. J. Exp. Bot.74:4910-4927.

[46] [46] Zhang, H., Zhu, J., Gong, Z., and Zhu, J.K.(2022). Abiotic stress responses in plants. Nat. Rev. Genet.23:104-119.

[47] [47] Zhang, J., Li, W., Xiang, T., Liu, Z., Laluk, K., Ding, X., Zou, Y., Gao, M., Zhang, X., Chen, S., et al.(2010). Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe7:290-301.

[48] [48] Zhang, M., and Zhang, S.(2022). Mitogen-activated protein kinase cascades in plant signaling. J. Integr. Plant Biol.64:301-341.

[49] [49] Zhang, Y., Tian, H., Chen, D., Zhang, H., Sun, M., Chen, S., Qin, Z., Ding, Z., and Dai, S.(2023). Cysteine-rich receptor-like protein kinases: emerging regulators of plant stress responses. Trends Plant Sci.28:776-794.

[50] [50] Zhao, M., Li, M., Huang, M., Liang, C., Chen, D., Hwang, I., Zhang, W., and Wang, M.(2023). The cysteine-rich receptor-like kinase CRK4 contributes to the different drought stress response between Columbia and Landsberg erecta. Plant Cell Environ46:3258-3272.

[51] [51] Zhao, J., Sun, Y., Li, X., and Li, Y.(2022). CYSTEINE-RICH RECEPTOR-LIKE KINASE5 (CRK5) and CRK22 regulate the response to Verticillium dahliae toxins. Plant Physiol.190:714-731.

[52] [52] Zhu, J.K.(2016). Abiotic Stress Signaling and Responses in Plants. Cell167:313-324.

Tools

Get Citation

Copy Citation Text

Ye Tiantian, Wang Huaijun, Zhang Lingqun, Li Xiaokai, Tu Haifu, Guo Zilong, Gao Tong, Zhang Yu, Ye Ying, Li Bingchen, Yang Weiping, Li Yibo, Lai Xuelei, Dong Faming, Xiong Haiyan, Xiong Lizhong. A novel OsCRK14-OsRLCK57-MAPK signaling module activates OsbZIP66 to confer drought resistance in rice[J]. Molecular Plant, 2025, 18(8): 1390

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Feb. 23, 2025

Accepted: Aug. 25, 2025

Published Online: Aug. 25, 2025

The Author Email:

DOI:10.1016/j.molp.2025.07.011

Topics