Chinese Journal of Lasers, Volume. 50, Issue 11, 1101017(2023)
Theoretical Research on Output Characteristics of High‐Pressure Isotope CO2 Picosecond Pulse Laser Amplification
[1] Pogorelsky I V, Babzien M, Ben-Zvi I et al. BESTIA-The next generation ultra-fast CO2 laser for advanced accelerator research[J]. Nuclear Instruments and Methods in Physics Research A, 829, 432-437(2016).
[2] Lü R C, Teng H, Zhu J F et al. High power Yb-fiber laser amplifier based on nonlinear chirped-pulse amplification at a repetition rate of 1 MHz[J]. Chinese Optics Letters, 19, 091401(2021).
[3] von Bergmann H. High pressure CO2 amplifiers for picosecond pulse amplification[J]. Proceedings of SPIE, 11042, 110420N(2019).
[4] Lu Y, Zhu Z R, Bai J Z et al. Generation of tail-free short pulses using high-pressure CO2 laser[J]. Chinese Optics Letters, 20, 051401(2022).
[5] Polyanskiy M N, Pogorelsky I V, Marcus B et al. Demonstration of a 2 ps, 5 TW peak power, long-wave infrared laser based on chirped-pulse amplification with mixed-isotope CO2 amplifiers[J]. OSA Continuum, 3, 459-472(2020).
[6] Ionin A A, Kinyaevskiy I O, Klimachev Y M et al. NH3 laser THz emission under optical pumping by “long” (∼100 µs) CO2 laser pulses[J]. Chinese Optics Letters, 21, 023701(2023).
[7] Snyder R. A proliferation assessment of third generation laser uranium enrichment technology[J]. Science & Global Security, 24, 68-91(2016).
[8] Polyanskiy M N, Pogorelsky I V, Babzien M et al. The 9.2 μm, 2 ps, multi-terawatt laser at the accelerator test facility (ATF) of Brookhaven national laboratory[C](2019).
[9] Badziak J, Borzecki M, Dzwigalski Z et al. Investigation of the electron-beam-controlled CO2 laser amplifier[J]. Technical Physics, 25, 3-22(1984).
[10] Miller J L, Ross A H M, George E V. Gain spectrum of a high-pressure CO2 laser[J]. Applied Physics Letters, 26, 523-526(1975).
[11] Polyanskiy M N, Pogorelsky I V, Yakimenko V. Picosecond pulse amplification in isotopic CO2 active medium[J]. Optics Express, 19, 7717-7725(2011).
[12] Pezh A, Saghafifar H. Theoretical investigation of the regenerative amplification of ultrashort pulses in a high-pressure transverse electric CO2 laser[J]. Applied Optics, 57, 5249-5256(2018).
[13] Polyanskiy M N, Pogorelsky I V, Marcus B et al. Ultrashort-pulse, terawatt, long-wave infrared lasers based on high-pressure CO2 amplifiers[J]. EPJ Web of Conferences, 255, 511010(2021).
[14] Bradley L, Soohoo K, Freed C. Absolute frequencies of lasing transitions in nine CO2 isotopic species[J]. IEEE Journal of Quantum Electronics, 22, 234-267(1986).
[15] Polyanskiy M N. Co2amp: a software program for modeling the dynamics of ultrashort pulses in optical systems with CO2 amplifiers[J]. Applied Optics, 54, 5136-5142(2015).
[16] Gordon I E, Rothman L S, Hill C et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 203, 3-69(2017).
[17] Lu Y, Zhu Z R, Bai J Z et al. Transversely excited multi-atmospheric-pressure CO2 laser[J]. Chinese Journal of Lasers, 49, 2301008(2022).
[18] Brimacombe R, Reid J. Accurate measurements of pressure-broadened linewidths in a transversely excited CO2 discharge[J]. IEEE Journal of Quantum Electronics, 19, 1668-1673(1983).
Get Citation
Copy Citation Text
Jinghan Ye, Ziren Zhu, Jinzhou Bai, Yu Liu, Rongqing Tan, Yijun Zheng, Xinjun Su. Theoretical Research on Output Characteristics of High‐Pressure Isotope CO2 Picosecond Pulse Laser Amplification[J]. Chinese Journal of Lasers, 2023, 50(11): 1101017
Category: laser devices and laser physics
Received: Dec. 22, 2022
Accepted: Mar. 13, 2023
Published Online: May. 19, 2023
The Author Email: Zheng Yijun (yjzheng@mail.ie.ac.cn)