Frontiers of Optoelectronics, Volume. 15, Issue 2, 12200(2022)

Spatial confinement effects of laser-induced breakdown spectroscopy at reduced air pressures

Zhongqi Hao1,2,3, Zhiwei Deng1,2, Li Liu1,2、*, Jiulin Shi1,2, and Xingdao He1,2
Author Affiliations
  • 1School of Measuring and Optoelectronic Engineering, Nanchang Hangkong University, Nanchang 330063, China
  • 2Key Laboratory of Opto-electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China
  • 3Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    References(37)

    [1] [1] Guo, L.B., Li, X.Y., Xiong, W., Zeng, X.Y., Lu, Y.F.: Recent technological progress in Asia from the first Asian symposium on laser-induced breakdown spectroscopy. Front. Phys. 11(6), 115208 (2016)

    [2] [2] Li, W.T., Zhu, Y.N., Li, X., Hao, Z.Q., Guo, L.B., Li, X.Y., Zeng, X.Y., Lu, Y.F.: In situ classification of rocks using stand-off laserinduced breakdown spectroscopy with a compact spectrometer. J. Anal. At. Spectrom. 33(3), 461–467 (2018)

    [3] [3] Li, W., Li, X.Y., Li, X., Hao, Z., Lu, Y., Zeng, X.: A review of remote laser-induced breakdown spectroscopy. Appl. Spectrosc. Rev. 55(1), 1–25 (2020)

    [4] [4] Zhu, Z., Li, J., Guo, Y., Cheng, X., Tang, Y., Guo, L., Li, X., Lu, Y., Zeng, X.: Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 33(2), 205–209 (2018)

    [5] [5] Li, Y., Tian, D., Ding, Y., Yang, G., Liu, K., Wang, C., Han, X.: A review of laser-induced breakdown spectroscopy signal enhancement. Appl. Spectrosc. Rev. 53(1), 1–35 (2018)

    [6] [6] Sun, D.X., Su, M.G., Dong, C.Z.: Emission signal enhancement and plasma diagnostics using collinear double pulse for laserinduced breakdown spectroscopy of aluminum alloys. Eur. Phys. J. Appl. Phys. 61(3), 30802 (2013)

    [7] [7] Nicolodelli, G., Senesi, G.S., Romano, R.A., Perazzoli, I.L.O., Milori, D.M.B.P.: Signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy applied to different soils. Spectrochim. Acta B 111, 23–29 (2015)

    [8] [8] Nassef, O.A., Elsayed-Ali, H.E.: Spark discharge assisted laser induced breakdown spectroscopy. Spectrochim. Acta B 60(12), 1564–1572 (2005)

    [9] [9] Liu, L., Huang, X., Li, S., Lu, Y., Chen, K.P., Lu, Y.: Optical emission enhancement in laser-induced breakdown spectroscopy using micro-torches. Proc. Soc. Photo-Instrum. Eng. 9736, 97361S (2016)

    [10] [10] Dell’Aglio, M., Alrifai, R., Giacomo, A.D.: Nanoparticle enhanced laser induced breakdown spectroscopy (NELIBS), a first review. Spectrochim. Acta B 148, 105–112 (2018)

    [11] [11] Giacomo, A.D., Gaudiuso, R., Koral, C., Dell’Aglio, M., Pascale, O.D.: Nanoparticle enhanced laser induced breakdown spectroscopy: effect of nanoparticles deposited on sample surface on laser ablation and plasma emission. Spectrochim. Acta B 98(8), 19–27 (2014)

    [12] [12] Sládková, L., Prochazka, D., Porizka, P., Skarkova, P., Remesova, M., Hrdlicka, A., Novotny, K., Celko, L., Kaiser, J.: Improvement of the laser-induced breakdown spectroscopy method sensitivity by the usage of combination of Ag-nanoparticles and vacuum conditions. Spectrochim. Acta B 127, 48–55 (2017)

    [13] [13] Yang, F., Jiang, L., Wang, S., Cao, Z., Liu, L., Wang, M., Lu, Y.: Emission enhancement of femtosecond laser-induced breakdown spectroscopy by combining nanoparticle and dual-pulse on crystal SiO2. Opt. Laser Technol. 93, 194–200 (2017)

    [14] [14] Hao, Z., Guo, L., Li, C., Shen, M., Zou, X., Li, X., Lu, Y., Zeng, X.: Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement. J. Anal. At. Spectrom. 29(12), 2309–2314 (2014)

    [15] [15] Shen, X., Lu, Y., Gebre, T., Ling, H., Han, Y.X.: Optical emission in magnetically confined laser-induced breakdown spectroscopy. J. Appl. Phys. 100(5), 053303 (2006)

    [16] [16] Guo, L.B., Hu, W., Zhang, B.Y., He, X.N., Li, C.M., Zhou, Y.S., Cai, Z.X., Zeng, X.Y., Lu, Y.F.: Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement. Opt. Express 19(15), 14067–14075 (2011)

    [17] [17] Akhtar, M., Jabbar, A., Mehmood, S., Ahmed, N., Ahmed, R., Baig, M.A.: Magnetic field enhanced detection of heavy metals in soil using laser induced breakdown spectroscopy. Spectrochim. Acta B 148, 143–151 (2018)

    [18] [18] Guo, L.B., Hao, Z.Q., Shen, M., Xiong, W., He, X.N., Xie, Z.Q., Gao, M., Li, X.Y., Zeng, X.Y., Lu, Y.F.: Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy. Opt. Express 21(15), 18188–18195 (2013)

    [19] [19] Guo, J., Shao, J., Wang, T., Zheng, C., Chen, A., Jin, M.: Optimization of distances between the target surface and focal point on spatially confined laser-induced breakdown spectroscopy with a cylindrical cavity. J. Anal. At. Spectrom. 32(2), 367–372 (2017)

    [20] [20] Fu, X., Li, G., Tian, H., Dong, D.: Detection of cadmium in soils using laser-induced breakdown spectroscopy combined with spatial confinement and resin enrichment. RSC Adv. 8(69), 39635–39640 (2018)

    [21] [21] Guo, J., Wang, T., Shao, J., Chen, A., Jin, M.: Emission enhancement of laser-induced breakdown spectroscopy by increasing sample temperature combined with spatial confinement. J. Anal. At. Spectrom. 33(12), 2116–2123 (2018)

    [22] [22] Liu, Y., Baudelet, M., Richardson, M.: Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics. J. Anal. At. Spectrom. 25(8), 1316–1323 (2010)

    [23] [23] Yang, X.Y., Hao, Z.Q., Li, C.M., Li, J.M., Yi, R.X., Shen, M., Li, K.H., Guo, L.B., Li, X.Y., Lu, Y.F., Zeng, X.Y.: Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy. Opt. Express 24(12), 13410–13417 (2016)

    [24] [24] Tang, Y., Li, J., Hao, Z., Tang, S., Zhu, Z., Guo, L., Li, X., Zeng, X., Duan, J., Lu, Y.: Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwaveassisted excitation. Opt. Express 26(9), 12121–12130 (2018)

    [25] [25] Vieira, A.L., Silva, T.V., De Sousa, F.S.I., Senesi, G.S., Junior, D.S., Ferreira, E.C., Neto, J.A.G.: Determinations of phosphorus in fertilizers by spark discharge-assisted laser-induced breakdown spectroscopy. Microchem. J. 139, 322–326 (2018)

    [26] [26] De Giacomo, A., Gaudiuso, R., Koral, C., Dell’Aglio, M., De Pascale, O.: Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples. Anal. Chem. 85(21), 10180–10187 (2013)

    [27] [27] Waheed, S., Bashir, S., Dawood, A., Anjum, S., Akram, M., Hayat, A., Amin, S., Zaheer, A.: Effect of magnetic field on laser induced breakdown spectroscopy of zirconium dioxide (ZrO2) plasma. Optik (Stuttgart) 140, 536–544 (2017)

    [28] [28] Shen, X.K., Sun, J., Ling, H., Lu, Y.: Spatial confinement effects in laser-induced breakdown spectroscopy. Appl. Phys. Lett. 91(8), 081501 (2007)

    [29] [29] Popov, A., Colao, F., Fantoni, R.: Spatial confinement of laserinduced plasma to enhance LIBS sensitivity for trace elements determination in soils. J. Anal. At. Spectrom. 25(6), 837–848 (2010)

    [30] [30] Guo, L., Li, C., Hu, W., Zhou, Y., Zhang, B., Cai, Z., Zeng, X., Lu, Y.: Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy. Appl. Phys. Lett. 98(13), 131501 (2011)

    [31] [31] Hou, Z., Wang, Z., Liu, J., Ni, W., Li, Z.: Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy. Opt. Express 21(13), 15974–15979 (2013)

    [32] [32] Hao, Z.Q., Liu, L., Shen, M., Yang, X.Y., Li, K.H., Guo, L.B., Li, X.Y., Lu, Y.F., Zeng, X.Y.: Investigation on self-absorption at reduced air pressure in quantitative analysis using laser-induced breakdown spectroscopy. Opt. Express 24(23), 26521–26528 (2016)

    [33] [33] Fu, Y., Hou, Z., Wang, Z.: Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy. Opt. Express 24(3), 3055–3066 (2016)

    [34] [34] Harilal, S.S., Miloshevsky, G.V., Diwakar, P.K., Lahaye, N.L., Hassanein, A.: Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere. Phys. Plasmas 19(8), 083504 (2012)

    [35] [35] Guo, L.B., Cheng, X., Tang, Y., Tang, S.S., Zeng, X.Y.: Improvement of spectral intensity and resolution with fiber laser for onstream slurry analysis in laser-induced breakdown spectroscopy. Spectrochim. Acta B 74(8), 913–920 (2018)

    [36] [36] Li, C., Wang, J., Wang, X.: Shock wave confinement-induced plume temperature increase in laser-induced breakdown spectroscopy. Phys. Lett. A 378(45), 3319–3325 (2014)

    [37] [37] Kumar, P., Soumyashree, S., Rao Epuru, N., Banerjee, S.B., Singh, R.P., Subramanian, K.P.: Determination of stark shifts and widths using time resolved laser-induced breakdown spectroscopy (LIBS) measurements. Appl. Spectrosc. 74(8), 913–920 (2020)

    Tools

    Get Citation

    Copy Citation Text

    Zhongqi Hao, Zhiwei Deng, Li Liu, Jiulin Shi, Xingdao He. Spatial confinement effects of laser-induced breakdown spectroscopy at reduced air pressures[J]. Frontiers of Optoelectronics, 2022, 15(2): 12200

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH ARTICLE

    Received: Aug. 21, 2021

    Accepted: Feb. 23, 2022

    Published Online: Jan. 18, 2023

    The Author Email: Li Liu (liuli@nchu.edu.cn)

    DOI:10.1007/s12200-022-00020-9

    Topics