Frontiers of Optoelectronics, Volume. 15, Issue 2, 12200(2022)
Spatial confinement effects of laser-induced breakdown spectroscopy at reduced air pressures
[1] [1] Guo, L.B., Li, X.Y., Xiong, W., Zeng, X.Y., Lu, Y.F.: Recent technological progress in Asia from the first Asian symposium on laser-induced breakdown spectroscopy. Front. Phys. 11(6), 115208 (2016)
[2] [2] Li, W.T., Zhu, Y.N., Li, X., Hao, Z.Q., Guo, L.B., Li, X.Y., Zeng, X.Y., Lu, Y.F.: In situ classification of rocks using stand-off laserinduced breakdown spectroscopy with a compact spectrometer. J. Anal. At. Spectrom. 33(3), 461–467 (2018)
[3] [3] Li, W., Li, X.Y., Li, X., Hao, Z., Lu, Y., Zeng, X.: A review of remote laser-induced breakdown spectroscopy. Appl. Spectrosc. Rev. 55(1), 1–25 (2020)
[4] [4] Zhu, Z., Li, J., Guo, Y., Cheng, X., Tang, Y., Guo, L., Li, X., Lu, Y., Zeng, X.: Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 33(2), 205–209 (2018)
[5] [5] Li, Y., Tian, D., Ding, Y., Yang, G., Liu, K., Wang, C., Han, X.: A review of laser-induced breakdown spectroscopy signal enhancement. Appl. Spectrosc. Rev. 53(1), 1–35 (2018)
[6] [6] Sun, D.X., Su, M.G., Dong, C.Z.: Emission signal enhancement and plasma diagnostics using collinear double pulse for laserinduced breakdown spectroscopy of aluminum alloys. Eur. Phys. J. Appl. Phys. 61(3), 30802 (2013)
[7] [7] Nicolodelli, G., Senesi, G.S., Romano, R.A., Perazzoli, I.L.O., Milori, D.M.B.P.: Signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy applied to different soils. Spectrochim. Acta B 111, 23–29 (2015)
[8] [8] Nassef, O.A., Elsayed-Ali, H.E.: Spark discharge assisted laser induced breakdown spectroscopy. Spectrochim. Acta B 60(12), 1564–1572 (2005)
[9] [9] Liu, L., Huang, X., Li, S., Lu, Y., Chen, K.P., Lu, Y.: Optical emission enhancement in laser-induced breakdown spectroscopy using micro-torches. Proc. Soc. Photo-Instrum. Eng. 9736, 97361S (2016)
[10] [10] Dell’Aglio, M., Alrifai, R., Giacomo, A.D.: Nanoparticle enhanced laser induced breakdown spectroscopy (NELIBS), a first review. Spectrochim. Acta B 148, 105–112 (2018)
[11] [11] Giacomo, A.D., Gaudiuso, R., Koral, C., Dell’Aglio, M., Pascale, O.D.: Nanoparticle enhanced laser induced breakdown spectroscopy: effect of nanoparticles deposited on sample surface on laser ablation and plasma emission. Spectrochim. Acta B 98(8), 19–27 (2014)
[12] [12] Sládková, L., Prochazka, D., Porizka, P., Skarkova, P., Remesova, M., Hrdlicka, A., Novotny, K., Celko, L., Kaiser, J.: Improvement of the laser-induced breakdown spectroscopy method sensitivity by the usage of combination of Ag-nanoparticles and vacuum conditions. Spectrochim. Acta B 127, 48–55 (2017)
[13] [13] Yang, F., Jiang, L., Wang, S., Cao, Z., Liu, L., Wang, M., Lu, Y.: Emission enhancement of femtosecond laser-induced breakdown spectroscopy by combining nanoparticle and dual-pulse on crystal SiO2. Opt. Laser Technol. 93, 194–200 (2017)
[14] [14] Hao, Z., Guo, L., Li, C., Shen, M., Zou, X., Li, X., Lu, Y., Zeng, X.: Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement. J. Anal. At. Spectrom. 29(12), 2309–2314 (2014)
[15] [15] Shen, X., Lu, Y., Gebre, T., Ling, H., Han, Y.X.: Optical emission in magnetically confined laser-induced breakdown spectroscopy. J. Appl. Phys. 100(5), 053303 (2006)
[16] [16] Guo, L.B., Hu, W., Zhang, B.Y., He, X.N., Li, C.M., Zhou, Y.S., Cai, Z.X., Zeng, X.Y., Lu, Y.F.: Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement. Opt. Express 19(15), 14067–14075 (2011)
[17] [17] Akhtar, M., Jabbar, A., Mehmood, S., Ahmed, N., Ahmed, R., Baig, M.A.: Magnetic field enhanced detection of heavy metals in soil using laser induced breakdown spectroscopy. Spectrochim. Acta B 148, 143–151 (2018)
[18] [18] Guo, L.B., Hao, Z.Q., Shen, M., Xiong, W., He, X.N., Xie, Z.Q., Gao, M., Li, X.Y., Zeng, X.Y., Lu, Y.F.: Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy. Opt. Express 21(15), 18188–18195 (2013)
[19] [19] Guo, J., Shao, J., Wang, T., Zheng, C., Chen, A., Jin, M.: Optimization of distances between the target surface and focal point on spatially confined laser-induced breakdown spectroscopy with a cylindrical cavity. J. Anal. At. Spectrom. 32(2), 367–372 (2017)
[20] [20] Fu, X., Li, G., Tian, H., Dong, D.: Detection of cadmium in soils using laser-induced breakdown spectroscopy combined with spatial confinement and resin enrichment. RSC Adv. 8(69), 39635–39640 (2018)
[21] [21] Guo, J., Wang, T., Shao, J., Chen, A., Jin, M.: Emission enhancement of laser-induced breakdown spectroscopy by increasing sample temperature combined with spatial confinement. J. Anal. At. Spectrom. 33(12), 2116–2123 (2018)
[22] [22] Liu, Y., Baudelet, M., Richardson, M.: Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics. J. Anal. At. Spectrom. 25(8), 1316–1323 (2010)
[23] [23] Yang, X.Y., Hao, Z.Q., Li, C.M., Li, J.M., Yi, R.X., Shen, M., Li, K.H., Guo, L.B., Li, X.Y., Lu, Y.F., Zeng, X.Y.: Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy. Opt. Express 24(12), 13410–13417 (2016)
[24] [24] Tang, Y., Li, J., Hao, Z., Tang, S., Zhu, Z., Guo, L., Li, X., Zeng, X., Duan, J., Lu, Y.: Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwaveassisted excitation. Opt. Express 26(9), 12121–12130 (2018)
[25] [25] Vieira, A.L., Silva, T.V., De Sousa, F.S.I., Senesi, G.S., Junior, D.S., Ferreira, E.C., Neto, J.A.G.: Determinations of phosphorus in fertilizers by spark discharge-assisted laser-induced breakdown spectroscopy. Microchem. J. 139, 322–326 (2018)
[26] [26] De Giacomo, A., Gaudiuso, R., Koral, C., Dell’Aglio, M., De Pascale, O.: Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples. Anal. Chem. 85(21), 10180–10187 (2013)
[27] [27] Waheed, S., Bashir, S., Dawood, A., Anjum, S., Akram, M., Hayat, A., Amin, S., Zaheer, A.: Effect of magnetic field on laser induced breakdown spectroscopy of zirconium dioxide (ZrO2) plasma. Optik (Stuttgart) 140, 536–544 (2017)
[28] [28] Shen, X.K., Sun, J., Ling, H., Lu, Y.: Spatial confinement effects in laser-induced breakdown spectroscopy. Appl. Phys. Lett. 91(8), 081501 (2007)
[29] [29] Popov, A., Colao, F., Fantoni, R.: Spatial confinement of laserinduced plasma to enhance LIBS sensitivity for trace elements determination in soils. J. Anal. At. Spectrom. 25(6), 837–848 (2010)
[30] [30] Guo, L., Li, C., Hu, W., Zhou, Y., Zhang, B., Cai, Z., Zeng, X., Lu, Y.: Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy. Appl. Phys. Lett. 98(13), 131501 (2011)
[31] [31] Hou, Z., Wang, Z., Liu, J., Ni, W., Li, Z.: Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy. Opt. Express 21(13), 15974–15979 (2013)
[32] [32] Hao, Z.Q., Liu, L., Shen, M., Yang, X.Y., Li, K.H., Guo, L.B., Li, X.Y., Lu, Y.F., Zeng, X.Y.: Investigation on self-absorption at reduced air pressure in quantitative analysis using laser-induced breakdown spectroscopy. Opt. Express 24(23), 26521–26528 (2016)
[33] [33] Fu, Y., Hou, Z., Wang, Z.: Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy. Opt. Express 24(3), 3055–3066 (2016)
[34] [34] Harilal, S.S., Miloshevsky, G.V., Diwakar, P.K., Lahaye, N.L., Hassanein, A.: Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere. Phys. Plasmas 19(8), 083504 (2012)
[35] [35] Guo, L.B., Cheng, X., Tang, Y., Tang, S.S., Zeng, X.Y.: Improvement of spectral intensity and resolution with fiber laser for onstream slurry analysis in laser-induced breakdown spectroscopy. Spectrochim. Acta B 74(8), 913–920 (2018)
[36] [36] Li, C., Wang, J., Wang, X.: Shock wave confinement-induced plume temperature increase in laser-induced breakdown spectroscopy. Phys. Lett. A 378(45), 3319–3325 (2014)
[37] [37] Kumar, P., Soumyashree, S., Rao Epuru, N., Banerjee, S.B., Singh, R.P., Subramanian, K.P.: Determination of stark shifts and widths using time resolved laser-induced breakdown spectroscopy (LIBS) measurements. Appl. Spectrosc. 74(8), 913–920 (2020)
Get Citation
Copy Citation Text
Zhongqi Hao, Zhiwei Deng, Li Liu, Jiulin Shi, Xingdao He. Spatial confinement effects of laser-induced breakdown spectroscopy at reduced air pressures[J]. Frontiers of Optoelectronics, 2022, 15(2): 12200
Category: RESEARCH ARTICLE
Received: Aug. 21, 2021
Accepted: Feb. 23, 2022
Published Online: Jan. 18, 2023
The Author Email: Li Liu (liuli@nchu.edu.cn)