Opto-Electronic Engineering, Volume. 50, Issue 8, 230153(2023)

Multifunctional metasurface image display enabled by merging spatial frequency multiplexing and near- and far-field multiplexing

Yuchong Zhou1, Weijun Ding1, Zile Li1,2, Hongchao Liu3, Rao Fu1, Qi Dai1,2、*, and Guoxing Zheng1,2、**
Author Affiliations
  • 1Electronic Information School, Wuhan University, Wuhan, Hubei 430072, China
  • 2Peng Cheng Laboratory, Shenzhen, Guangdong 518055, China
  • 3Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR 999078, China
  • show less
    References(50)

    [1] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [2] Zhang Y Z, Lin P C, Huo P C et al. Dielectric metasurface for synchronously spiral phase contrast and bright-field imaging[J]. Nano Lett, 23, 2991-2997(2023).

    [3] Gao H, Wang Y X, Fan X H et al. Dynamic 3D meta-holography in visible range with large frame number and high frame rate[J]. Sci Adv, 6, eaba8595(2020).

    [4] Shi T, Deng Z L, Geng G Z et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum[J]. Nat Commun, 13, 4111(2022).

    [5] Wang D Y, Liu F F, Liu T et al. Efficient generation of complex vectorial optical fields with metasurfaces[J]. Light Sci Appl, 10, 67(2021).

    [6] Yu B B, Wen J, Chen L et al. Polarization-independent highly efficient generation of Airy optical beams with dielectric metasurfaces[J]. Photonics Res, 8, 1148-1154(2020).

    [7] Xu Z T, Huang L L, Li X W et al. Quantitatively correlated amplitude holography based on photon sieves[J]. Adv Opt Mater, 8, 1901169(2020).

    [8] Huang K, Deng J, Leong H S et al. Ultraviolet metasurfaces of ≈80% efficiency with antiferromagnetic resonances for optical vectorial anti‐counterfeiting[J]. Laser Photonics Rev, 13, 1800289(2019).

    [9] Zheng G X, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 10, 308-312(2015).

    [10] Fu R, Chen K X, Li Z L et al. Metasurface-based nanoprinting: principle, design and advances[J]. Opto-Electron Sci, 1, 220011(2022).

    [11] Wang L, Kruk S, Tang H Z et al. Grayscale transparent metasurface holograms[J]. Optica, 3, 1504-1505(2016).

    [12] Li Z L, Kim I, Zhang L et al. Dielectric meta-holograms enabled with dual magnetic resonances in visible light[J]. ACS Nano, 11, 9382-9389(2017).

    [13] Tan S J, Zhang L, Zhu D et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures[J]. Nano Lett, 14, 4023-4029(2014).

    [14] Sun S, Zhou Z X, Zhang C et al. All-dielectric full-color printing with TiO2 metasurfaces[J]. ACS Nano, 11, 4445-4452(2017).

    [15] Gao B F, Ren M X, Wu W et al. Lithium niobate metasurfaces[J]. Laser Photonics Rev, 13, 1800312(2019).

    [16] Yue F Y, Zhang C M, Zang X F et al. High-resolution grayscale image hidden in a laser beam[J]. Light Sci Appl, 7, 17129(2018).

    [17] Dai Q, Deng L G, Deng J et al. Ultracompact, high-resolution and continuous grayscale image display based on resonant dielectric metasurfaces[J]. Opt Express, 27, 27927-27935(2019).

    [18] Xu K, Wang X E, Fan X H et al. Meta-holography: from concept to realization[J]. Opto-Electron Eng, 49, 220183(2022).

    [19] Chen W T, Zhu A Y, Sanjeev V et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nat Nanotechnol, 13, 220-226(2018).

    [20] Arbabi A, Horie Y, Ball A J et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nat Commun, 6, 7069(2015).

    [21] Pahlevaninezhad H, Khorasaninejad M, Huang Y W et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo[J]. Nat Photonics, 12, 540-547(2018).

    [22] Shrestha S, Overvig A C, Lu M et al. Broadband achromatic dielectric metalenses[J]. Light Sci Appl, 7, 85(2018).

    [23] Khorasaninejad M, Chen W T, Devlin R C et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016).

    [24] Zhu Y C, Chen X L, Yuan W Z et al. A waveguide metasurface based quasi-far-field transverse-electric superlens[J]. Opto-Electron Adv, 4, 210013(2021).

    [25] Zheng G X, Liu G G, Kenney M G et al. Ultracompact high-efficiency polarising beam splitter based on silicon nanobrick arrays[J]. Opt Express, 24, 6749-6757(2016).

    [26] Li Z L, Zheng G X, He P A et al. All-silicon nanorod-based Dammann gratings[J]. Opt Lett, 40, 4285-4288(2015).

    [27] Wan C W, Yang R, Shi Y Y et al. Visible-frequency meta-gratings for light steering, beam splitting and absorption tunable functionality[J]. Opt Express, 27, 37318-37326(2019).

    [28] Shen Z C, Zhao F, Jin C Q et al. Monocular metasurface camera for passive single-shot 4D imaging[J]. Nat Commun, 14, 1035(2023).

    [29] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat Nanotechnol, 10, 937-943(2015).

    [30] Yue F Y, Wen D D, Xin J T et al. Vector vortex beam generation with a single plasmonic metasurface[J]. ACS Photonics, 3, 1558-1563(2016).

    [31] Tittl A, Leitis A, Liu M K et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 360, 1105-1109(2018).

    [32] Yesilkoy F, Arvelo E R, Jahani Y et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nat Photonics, 13, 390-396(2019).

    [33] Bao Y J, Yu Y, Xu H F et al. Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching and encoding[J]. Adv Funct Mater, 28, 1805306(2018).

    [34] Balthasar Mueller J P, Rubin N A, Devlin R C et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Phys Rev Lett, 118, 113901(2017).

    [35] Guo J Y, Wang T, Quan B G et al. Polarization multiplexing for double images display[J]. Opto-Electron Adv, 2, 180029(2019).

    [36] Deng L G, Deng J, Guan Z Q et al. Malus-metasurface-assisted polarization multiplexing[J]. Light Sci Appl, 9, 101(2020).

    [37] Li J X, Chen Y Q, Hu Y Q et al. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display[J]. ACS Nano, 14, 7892-7898(2020).

    [38] Deng J, Deng L G, Guan Z Q et al. Multiplexed anticounterfeiting meta-image displays with single-sized nanostructures[J]. Nano Lett, 20, 1830-1838(2020).

    [39] Wen D D, Cadusch J J, Meng J J et al. Multifunctional dielectric metasurfaces consisting of color holograms encoded into color printed images[J]. Adv Funct Mater, 30, 1906415(2020).

    [40] Deng J, Yang Y, Tao J et al. Spatial frequency multiplexed meta-holography and meta-nanoprinting[J]. ACS Nano, 13, 9237-9246(2019).

    [41] Zhang F, Pu M B, Gao P et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces[J]. Adv Sci, 7, 1903156(2020).

    [42] Yang R, Yu Q Q, Pan Y W et al. Directional-multiplexing holography by on-chip metasurface[J]. Opto-Electron Eng, 49, 220177(2022).

    [43] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proc Roy Soc A Math Phys Eng Sci, 392, 45-57(1984).

    [44] Pancharatnam S. Generalized theory of interference, and its applications[J]. Proc Indian Acad Sci Sec A, 44, 247-262(1956).

    [45] Xie X, Pu M B, Jin J J et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms[J]. Phys Rev Lett, 126, 183902(2021).

    [46] Khorasaninejad M, Zhu A Y, Roques-Carmes C et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Lett, 16, 7229-7234(2016).

    [47] Chong K E, Staude I, James A et al. Polarization-independent silicon metadevices for efficient optical wavefront control[J]. Nano Lett, 15, 5369-5374(2015).

    [48] Papadopoulos A, Nguyen T, Durmus E et al. IllusionPIN: shoulder-surfing resistant authentication using hybrid images[J]. IEEE Trans Inf Forensics Secur, 12, 2875-2889(2017).

    [49] Mannos J, Sakrison D. The effects of a visual fidelity criterion of the encoding of images[J]. IEEE Trans Inf Theory, 20, 525-536(1974).

    [50] Dai Q, Guan Z Q, Chang S et al. A single-celled tri-functional metasurface enabled with triple manipulations of light[J]. Adv Funct Mater, 30, 2003990(2020).

    Tools

    Get Citation

    Copy Citation Text

    Yuchong Zhou, Weijun Ding, Zile Li, Hongchao Liu, Rao Fu, Qi Dai, Guoxing Zheng. Multifunctional metasurface image display enabled by merging spatial frequency multiplexing and near- and far-field multiplexing[J]. Opto-Electronic Engineering, 2023, 50(8): 230153

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Jun. 29, 2023

    Accepted: Aug. 28, 2023

    Published Online: Nov. 15, 2023

    The Author Email:

    DOI:10.12086/oee.2023.230153

    Topics