Chinese Journal of Lasers, Volume. 42, Issue 5, 503007(2015)

Experimental Research on Size Effects in Laser Dynamic Flexible Micro-Bending Forming

Ma Youjuan1、*, Liu Huixia1, Zhou Jianzhong1, Zhu hejun2, Chen Jun2, Qian Qing1, and Wang Xiao1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(25)

    [1] [1] Vollertsen F, Hu Z, Niehoff H S, et al.. State of the art in micro forming and investigations into micro deep drawing[J]. Journal of Materials Processing Technology, 2004, 151(1-3): 70-79.

    [2] [2] Geiger M, Kleiner M, Eckstein R, et al.. Microforming[J]. CIRP Annals-Manufacturing Technology, 2001, 50(2): 445-462.

    [3] [3] Gao H, Ye C, Cheng G J. Deformation behaviors and critical parameters in microscale laser dynamic forming[J]. Journal of Manufacturing Science and Engineering, 2009, 131(5): 051011.

    [5] [5] Wang Xiao, Liu Hui, Shen Zongbao, et al.. Forming ability of the metal foil forming by laser-driven multi-layered flyer[J]. Chinese J Lasers, 2013, 40 (5): 0503006.

    [6] [6] Li J, Gao H, Cheng G J. Forming limit and fracture mode of microscale laser dynamic forming[J]. Journal of Manufacturing Science and Engineering, 2010, 132(6): 061005.

    [7] [7] Cheng G J, Pirzada D, Zhou M. Microstructure and mechanical property characterizations of metal foil after microscale laser dynamic forming[J]. Journal of Applied Physics, 2007, 101(6): 063108.

    [8] [8] Liu Huixia, Zhang Qiang, Gu Chunxin, et al.. Experimental investigation on warm micro-forming by laser-driven flyer[J]. Chinese J Lasers, 2014, 41(7): 0703011.

    [9] [9] Gao H, Cheng G J. Laser-induced high-strain-rate superplastic 3-D microforming of metallic thin films[J]. Journal of Microelectromechanical Systems, 2010, 19(2): 273-281.

    [10] [10] Lu Mengmeng, Liu Huixia, Shen Zongbao, et al.. Experiment and simulation of multihole micro-punching with complex layouts by laser-driven flyer[J]. Chinese J Lasers, 2014, 41(4): 0403004.

    [11] [11] Vollertsen F, Biermann D, Hansen H N, et al.. Size effects in manufacturing of metallic components[J]. CIRP Annals-Manufacturing Technology, 2009, 58(2): 566-587.

    [12] [12] Raulea L V, Goijaerts A M, Govaert L E, et al.. Size effects in the processing of thin metal sheets[J]. Journal of Materials Processing Technology, 2001, 115(1): 44-48.

    [13] [13] Mahabunphachai S, Ko M. Investigation of size effects on material behavior of thin sheet metals using hydraulic bulge testing at micro/meso-scales[J]. International Journal of Machine Tools and Manufacture, 2008, 48(9): 1014-1029.

    [14] [14] Gau J T, Principe C, Yu M. Springback behavior of brass in micro sheet forming[J]. Journal of Materials Processing Technology, 2007, 191(1): 7-10.

    [15] [15] Parasiz S A, Vanbenthysen R, Kinsey B L. Deformation size effects due to specimen and grain size in microbending[J]. Journal of Manufacturing Science and Engineering, 2010, 132(1): 011018.

    [16] [16] Chan W L, Fu M W. Experimental and simulation based study on micro-scaled sheet metal deformation behavior in microembossing process[J]. Materials Science and Engineering: A, 2012, 556: 60-67.

    [17] [17] Fu M W, Chan W L. Geometry and grain size effects on the fracture behavior of sheet metal in micro-scale plastic deformation[J]. Materials & Design, 2011, 32 (10): 4738-4746.

    [18] [18] Kim G Y, Ko M, Ni J. Experimental and numerical investigations on microcoining of stainless steel 304[J]. Journal of Manufacturing Science and Engineering, 2008, 130(4): 041017.

    [19] [19] Meyers M A, Andrade U R, Chokshi A H. The effect of grain size on the high-strain, high-strain-rate behavior of copper[J]. Metallurgical and materials transactions A, 1995, 26(11): 2881-2893.

    [20] [20] Schmidt C G, Caligiuri R D, Giovanola J H, et al.. Effect of grain size on high strain rate deformation of copper[J]. Metallurgical Transactions A, 1991, 22(10): 2349-2357.

    [21] [21] Hu Y X, Li K M, Qi C J, et al.. Size effect on indentation depth of oxygen-free high purity copper induced by laser shock processing [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(2): 573-578.

    [22] [22] Gao H, Cheng G J. 3D microscale laser dynamic forming: Multiscale modeling and experimental validation[J]. Journal of Applied Physics, 2011, 109 (10): 103511.

    [23] [23] Raulea L V, Goijaerts A M, Govaert L E, et al.. Size effects in the processing of thin metal sheets[J]. Journal of Materials Processing Technology, 2001, 115(1): 44-48.

    [24] [24] Fu M W, Chan W L. A review on the state-of-the-art microforming technologies[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(9-12): 2411-2437.

    [25] [25] Liu H X, Hu Y, Wang X, et al.. Grain refinement progress of pure titanium during laser shock forming (LSF) and mechanical property characterizations with nanoindentation[J]. Materials Science and Engineering: A, 2013, 564: 13-21.

    CLP Journals

    [1] Zhang Di, Liu Lihua, Guo Hua, Chen Zhilan. Experiment and Simulation of Manufacturing Microparts by Laser Indirect Shocking[J]. Laser & Optoelectronics Progress, 2016, 53(8): 81404

    Tools

    Get Citation

    Copy Citation Text

    Ma Youjuan, Liu Huixia, Zhou Jianzhong, Zhu hejun, Chen Jun, Qian Qing, Wang Xiao. Experimental Research on Size Effects in Laser Dynamic Flexible Micro-Bending Forming[J]. Chinese Journal of Lasers, 2015, 42(5): 503007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Dec. 12, 2014

    Accepted: --

    Published Online: May. 4, 2015

    The Author Email: Youjuan Ma (phyllismay@163.com)

    DOI:10.3788/cjl201542.0503007

    Topics