Acta Optica Sinica, Volume. 44, Issue 6, 0601012(2024)

Simulation and Error Analysis of Coherent Differential Absorption Carbon Dioxide Lidar

Yinying Li1, Xiangcheng Chen1, Cuirong Yu2, Guangyao Dai1, and Songhua Wu1,3,4、*
Author Affiliations
  • 1College of Marine Technology, Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266100, Shandong , China
  • 2Qingdao Leice Transient Technology Co., Ltd., Qingdao 266101, Shandong , China
  • 3Laoshan Laboratory, Qingdao 266237, Shandong , China
  • 4Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, Shandong , China
  • show less
    Figures & Tables(23)
    Structural design drawing of CDIAL system
    Flow chart of simulation of echo signal by CDIAL
    Simulation results of echo signal. (a) Aerosol backscattering coefficient; (b) standard atmospheric model; (c) CO2 volume fraction profile; (d) simulated echo signal
    Variation of DAOD with drift of λon at different heights
    Variation of CO2 molecular absorption cross section with wavelength
    RSE introduced by wavelength shift in DAOD at different altitudes
    Variation of DAOD with increasing temperature offset at different heights
    CO2 molecular absorption cross section difference
    RSE of DAOD at different altitudes induced by temperature bias
    Variation of DAOD with increasing pressure offset at different heights
    RSE of DAOD at different altitudes induced by pressure bias
    SNR of echo output varies with height under different aerosol conditions
    Random error of CO2 volume fraction varies with height under different aerosol conditions
    RSE of volume fraction inversion caused by wavelength drift
    RSE of volume fraction inversion caused by temperature uncertainty
    RSE of CO2 molecular number density caused by temperature uncertainty
    RSE of volume fraction inversion caused by pressure uncertainty
    RSE of CO2 molecular number density caused by pressure uncertainty
    RSE of CO2 volume fraction caused by measurement deviation of water vapor volume mixing ratio
    • Table 1. Parameters of CDIAL system

      View table

      Table 1. Parameters of CDIAL system

      SystemItemContent
      Transmission systemLaserMOPA fiber laser
      Laser wavelength(on)/nm1572.335
      Laser wavelength(off)/nm1572.180
      Pulse energy /μJ80
      Laser linewidth /kHz<5
      Repetition frequency /kHz10
      Intermediate frequency /MHz80
      Pulse width /ns400
      Telescope diameter /mm80
      Acquisition systemDetectorBalance detector
      Responsivity /(A·W-11
      ADC sampling /(Gbit/s)1
      Bandwidth /MHz200
    • Table 2. Simulation parameters of echo signal

      View table

      Table 2. Simulation parameters of echo signal

      Simulation parameterValueSimulation parameterValue
      Laser wavelength(on/off)/nm1572.335/1572.180Input impedance /Ω50
      Pulse energy /μJ80Gain1000
      Quantum efficiency0.80Number of range gates512
      Telescope diameter /mm80Local oscillator truncation efficiency /mW2
      Instrumental constant0.6026Heterodyne efficiency /%46.1
    • Table 3. Parameters of balance detector system

      View table

      Table 3. Parameters of balance detector system

      ParameterValueParameterValue
      Bandwidth /MHz200Responsivity /(A·W-11 @1550 nm
      Output impedance /Ω50Maximum output /V1.5 @50 Ω
      Detector diameter /μm75
    • Table 4. Total error of system

      View table

      Table 4. Total error of system

      Error sourceUncertainty

      Relative system

      error /%

      Absolute

      error /10-6

      Total0.451.80
      Wavelength0.5 pm0.010.04
      Temperature1 K0.411.64
      Pressure1 hPa0.110.44
      Water vapor10%0.160.64
    Tools

    Get Citation

    Copy Citation Text

    Yinying Li, Xiangcheng Chen, Cuirong Yu, Guangyao Dai, Songhua Wu. Simulation and Error Analysis of Coherent Differential Absorption Carbon Dioxide Lidar[J]. Acta Optica Sinica, 2024, 44(6): 0601012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Apr. 12, 2023

    Accepted: Aug. 3, 2023

    Published Online: Mar. 19, 2024

    The Author Email: Wu Songhua (wush@ouc.edu.cn)

    DOI:10.3788/AOS230805

    CSTR:32393.14.AOS230805

    Topics