Chinese Journal of Lasers, Volume. 44, Issue 2, 201007(2017)
High Power Tandem-Pumped Yb-Doped Fiber Laser
[1] [1] Koester C J, Snitzer E. Amplification in a fiber laser[J]. Applied Optics, 1964, 3(10): 1182-1186.
[2] [2] Paschotta R, Nilsson J, Tropper A C, et al. Ytterbium-doped fibre amplifiers[J]. IEEE Journal of Quantum Electronics, 1997, 33(7): 1049-1056.
[3] [3] Horley R, Norman S, Zervas M N. Progress and development in fibre laser technology[C]. SPIE, 2007, 6738: 67380K.
[4] [4] Limpert J, Roser F, Klingebiel S, et al. The rising power of fiber lasers and amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 537-545.
[5] [5] Nilsson J, Payne D N. High-power fiber lasers[J]. Science, 2011, 332(6032): 921-922.
[6] [6] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. J Opt Soc Am B, 2010, 27(11): B63-B92.
[7] [7] Snitzer E, Po H, Hakimi F, et al. Double-clad offset core Nd fiber laser[C]. Optical Fiber Communication Conf. 1988, PD5: 533-536.
[8] [8] Pask H M, Archambault J L, Hanna D C, et al. Operation of cladding-pumped Yb3+-doped silica fibre lasers in 1 μm region[J]. Electronics Letters, 1994, 30(11): 863-865.
[9] [9] Dominic V, Mac Cormack S, Waarts R, et al. 110 W fiber laser[C]. Lasers and Electro-Optics, IEEE, 1999, 35(14): 1158-1160.
[11] [11] Jeong Y, Sahu J K, Williams R B, et al. Ytterbium-doped large-core fibre laser with 272 W output power[J]. Electronics Letters, 2003, 39(13): 1.
[12] [12] Yan P, Yin S, He J, et al. 1.1 kW Ytterbium monolithic fiber laser with assembled end-pump scheme to couple high brightness single emitters[J]. IEEE Photonics Technology Letters, 2011, 23(11): 697-699.
[13] [13] Khitrov V, Minelly J D, Tumminelli R, et al. 3 kW single-mode direct diode-pumped fiber laser[C]. SPIE, 2014, 8961: 89610V.
[14] [14] Yu H, Wang X, Tao R, et al. 1.5 kW, near-diffraction-limited, high-efficiency, single-end-pumped all-fiber-integrated laser oscillator[J]. Applied Optics, 2014, 53(34): 8055-8059.
[15] [15] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266.
[16] [16] Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224.
[17] [17] Ward B, Robin C, Dajani I. Origin of thermal modal instabilities in large mode area fiber amplifiers[J]. Optics Express, 2012, 20(10): 11407-11422.
[18] [18] Smith A V, Smith J J. Overview of a steady-periodic model of modal instability in fiber amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 472-483.
[19] [19] Tao R, Ma P, Wang X, et al. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength[J]. Journal of Optics, 2015, 17(4): 045504.
[20] [20] Tao Rumao. Study of thermal-induced modal instabilities in high power narrow-linewidth fiber amplifiers with near diffraction-limited beam quality[D]. Changsha: National University of Defense Technology, 2015.
[21] [21] Koponen J J, Hoffman H J, Tammela S K T. Measuring photodarkening from single-mode ytterbium doped silica fibers[J]. Optics Express, 2006, 14(24): 11539-11544.
[22] [22] Codemard C A, Sahu J K, Nilsson J. Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers[J]. IEEE Journal of Quantum Electronics, 2010, 46(12): 1860-1869.
[23] [23] Stiles E. New developments in IPG fiber laser technology[C]. Proceedings of the 5th International Workshop on Fiber Lasers, 2009.
[24] [24] Strohmaier S, Tillkorn C, Olschowsky P, et al. High-power, high-brightness direct-diode lasers[J]. Optics and Photonics News, 2010, 21(10): 24-29.
[27] [27] Minelly J D, Laming R I, Townsend J E, et al. High-gain fibre power amplifier tandem-pumped by a 3 W multi-stripe diode[C]. Optical Fiber Communications Conference, 1992.
[28] [28] Zhang J, Fromzel V, Dubinskii M. Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency[J]. Optics Express, 2011, 19(6): 5574-5578.
[29] [29] Lim E L, Alam S, Richardson D J. Optimizing the pumping configuration for the power scaling of in-band pumped erbium doped fiber amplifiers[J]. Optics Express, 2012, 20(13): 13886-13895.
[30] [30] Geng J, Wang Q, Luo T, et al. Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber[J]. Optics Letters, 2009, 34(22): 3493-3495.
[31] [31] Wang X, Zhou P, Zhang H, et al. 100 W-level Tm-doped fiber laser pumped by 1173 nm Raman fiber lasers[J]. Optics Letters, 2014, 39(15): 4329-4332.
[32] [32] Boullet J, Zaouter Y, Desmarchelier R, et al. High power ytterbium-doped rod-type three-level photonic crystal fiber laser[J]. Optics Express, 2008, 16(22): 17891-17902.
[33] [33] Roeser F, Jauregui C, Limpert J, et al. 94 W 980 nm high brightness Yb-doped fiber laser[J]. Optics Express, 2008, 16(22): 17310-17318.
[34] [34] Aleshkina S S, Likhachev M E, Lipatov D S, et al. 5.5 W monolitic single-mode fiber laser and amplifier operating near 976 nm[C]. SPIE, 2016, 9728: 97281C.
[35] [35] Yoo S, Soh D B S, Kim J, et al. Analysis of W-type waveguide for Nd-doped fiber laser operating near 940 nm[J]. Optics Communications, 2005, 247(1): 153-162.
[36] [36] Laroche M, Bartolacci C, Cadier B, et al. Generation of 520 mW pulsed blue light by frequency doubling of an all-fiberized 978 nm Yb-doped fiber laser source[J]. Optics Letters, 2011, 36(19): 3909-3911.
[37] [37] Laroche M, Bartolacci C, Hervé G, et al. All-fiber Yb-doped CW and pulsed laser sources operating near 980nm[C].Advanced Solid-State Photonics, Optical Society of America, 2011: ATuB9.
[38] [38] Xiao Hu. Study on tandem pumping technology of Ytterbium-doped fiber lasers[D]. Changsha: National University of Defense Technology, 2012.
[39] [39] Hao Jinping, Yan Ping, Xiao Qirong, et al. Optical properties of ytterbium-doped tandem-pumped fiber oscillator[J]. Chinese Physics B, 2013, 23(1): 014203.
[40] [40] Kurkov A S. Oscillation spectral range of Yb-doped fiber lasers[J]. Laser Physics Letters, 2006, 4(2): 93-102.
[41] [41] Allain J Y, Monerie M, Poignant H. Ytterbium-doped fluoride fibre laser operating at 1.02 μm[J]. Electronics Letters, 1992, 28(11): 988-989.
[42] [42] Allian J Y, Bayon J F. Ytterbium-doped silica fiber laser with Intracore Bragg gratings operating at 1.02 μm[J]. Electronics Letters, 1993, 29(3): 309-310.
[43] [43] Pask H M, Archambault J L, Hanna D C, et al. Operation of cladding-pumped Yb3+-doped silica fibre lasers in 1 μm region[J]. Electronics Letters, 1994, 30(11): 863-865.
[44] [44] Kurkov A, Medvedkov O I, Paramonov V M, et al. High-power Yb-doped double-clad fiber lasers for a range of 0.98-1.04 μm [C]. Optical Amplifiers and Their Applications, Optical Society of America, 2001: OWC2.
[45] [45] Seifert A, Sinther M, Walther T, et al. Narrow-linewidth, multi-watt Yb-doped fiber amplifier at 1014.8 nm[J]. Applied Optics, 2006, 45(30): 7908-7911.
[46] [46] Xiao H, Zhou P, Wang X L, et al. High power 1018 nm monolithic Yb3+-doped fiber laser and amplifier[J]. Laser Physics Letters, 2012, 9(10): 748.
[47] [47] Steinborn R, Koglbauer A, Bachor P, et al. A continuous wave 10 W cryogenic fiber amplifier at 1015 nm and frequency quadrupling to 254 nm[J]. Optics Express, 2013, 21(19): 22693-22698.
[48] [48] Xiao H, Zhou P, Wang X L, et al. High power 1018 nm ytterbium doped fiber laser with an output power of 309 W[J]. Laser Physics Letters, 2013, 10(6): 065102.
[49] [49] Beier F, Otto H J, Jauregui C, et al. 1009 nm continuous-wave ytterbium-doped fiber amplifier emitting 146 W[J]. Optics Letters, 2014, 39(13): 3725-3727.
[50] [50] Jiang M, Zhou P, Xiao H, et al. A high-power narrow-linewidth 1018 nm fiber laser based on a single-mode-few-mode-single-mode structure[J]. High Power Laser Science and Engineering, 2015, 3(3): 1-4.
[51] [51] Wang Yanshan, Sun Yinhong, Ma Yi, et al. Experimental study on high brightness 1018 nm Ytterbium doped fiber laser[J]. Chinese J Lasers, 2015, 42(1): 0102007.
[52] [52] Xiao H, Leng J, Zhang H, et al. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump[J]. Applied Optics, 2015, 54(27): 8166-8169.
[53] [53] Gu G, Liu Z, Kong F, et al. Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm[J]. Optics Express, 2015, 23(14): 17693-17700.
[54] [54] Ottenhues C, Theeg T, Hausmann K, et al. Single-mode monolithic fiber laser with 200 W output power at a wavelength of 1018 nm[J]. Optics Letters, 2015, 40(21): 4851-4854.
[55] [55] Glick Y, Sintov Y, Zuitlin R, et al. Single mode 1018 nm fiber laser with power of 230 W[C]. SPIE, 2015, 9728: 97282T.
[56] [56] Seah C P, Ng T Y, Chua S L. 400 W Ytterbium-doped fiber oscillator at 1018 nm[C]. Advanced Solid State Lasers. Optical Society of America, 2015: ATu2A. 33.
[57] [57] Zhang Xiujuan, Duan Yunfeng, Zhao Shui, et al. Experimental study on high efficient all-fiber lasers at 1018 nm[J]. Acta Optica Sinica, 2016, 36(4): 0414002.
[58] [58] Sun Yinhong, Ke Weiwei, Feng Yujun, et al.1030 nm kilowatt-level ytterbium-doped narrow linewidth fiber amplifier[J]. Chinese J Lasers, 2016, 43(6): 0601003.
[59] [59] Injeyan H, Pflug G C, Vespucci M T. High power laser handbook[M]. New York: McGraw-Hill, 2011.
[60] [60] Ferin A, Gapontsev V, Fomin V, et al. 17 kW CW laser with 50 μm delivery[C]. 6th International Symposium on High-Power Fiber Lasers and Their Applications. 2012.
[61] [61] Xiao Hu, Leng Jinyong, Wu Wuming, et al. High efficiency tandem-pumped fiber amplifier[J]. Acta Physica Sinica, 2011, 60(12): 124207.
[62] [62] Yao T, Ji J, Sahu J K, et al. Tandem-pumped ytterbium-doped aluminosilicate fiber amplifier with low quantum defect[C]. CLEO: Science and Innovations, Optical Society of America, 2012: CM4N. 7.
[63] [63] Jiang Man, Xiao Hu, Zhou Pu, et al. High power and low quantum-defect Yb-doped fiber amplifier based on tandem pumping[J]. Acta Physica Sinica, 2013, 62(4): 044210.
[64] [64] Theeg T, Ottenhues C, Sayinc H, et al. Core-pumped single-frequency fiber amplifier with an output power of 158 W[J]. Optics Letters, 2016, 41(1): 9-12.
[65] [65] Wirth C, Schmidt O, Kliner A, et al. High-power tandem pumped fiber amplifier with an output power of 2.9 kW[J]. Optics Letters, 2011, 36(16): 3061-3063.
[66] [66] Popp A, Voss A, Graf T, et al. Thin-disk laser-pumping of ytterbium-doped fiber laser[J]. Laser Physics Letters, 2011, 8(12): 887.
[67] [67] Zhou Bingkun. Laser principle[M]. Beijing: National Defence Industry Press, 2003: 14-15.
[68] [68] Henry L J, Shay T M, Hult D W, et al. Thermal effects in narrow linewidth single and two tone fiber lasers[J]. Optics Express, 2011, 19(7): 6164-6176.
[69] [69] Zhang B, Zhang R, Xue Y, et al. Temperature dependence of ytterbium-doped tandem-pumped fiber amplifiers[J]. IEEE Photonics Technology Letters, 2016, 28(2): 159-162.
[70] [70] Huang Z, Tang X, Lin H, et al. Tapered cladding diameter profile design for high-power tandem-pumped fiber lasers[J]. Laser Physics, 2016, 26(5): 055101.
[71] [71] Pureur V, Bigot L, Bouwmans G, et al. Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm[J]. Applied Physics Letters, 2008, 92(6): 1113.
[72] [72] Nilsson J, Minelly J D, Paschotta R, et al. Ring-doped cladding-pumped single-mode three-level fiber laser[J]. Optics Letters, 1998, 23(5): 355-357.
[73] [73] Bouchier A, Lucas-Leclin G, Georges P, et al. Frequency doubling of an efficient continuous wave single-mode Yb-doped fiber laser at 978 nm in a periodically-poled MgO∶LiNbO3 waveguide[J]. Optics Express, 2005, 13(18): 6974-6979.
[74] [74] Li P, Zou S, Zhang X, et al. A 980nm Yb-doped single-mode fiber laser pumped by a 946nm Q-switched Nd∶YAG laser[J]. Optics & Laser Technology, 2010, 42(8): 1229-1232.
[75] [75] Laroche M, Bartolacci C, Hervé G, et al. All-fiber Yb-doped CW and pulsed laser sources operating near 980 nm[C]. Advanced Solid-State Photonics, Optical Society of America, 2011: ATuB9.
Get Citation
Copy Citation Text
Xiao Hu, Leng Jinyong, Zhou Pu, Zhang Hanwei, Xu Jiangming, Wu Jian, Liu Zejin. High Power Tandem-Pumped Yb-Doped Fiber Laser[J]. Chinese Journal of Lasers, 2017, 44(2): 201007
Category: laser devices and laser physics
Received: Oct. 19, 2016
Accepted: --
Published Online: Feb. 22, 2017
The Author Email: