Chinese Journal of Lasers, Volume. 48, Issue 8, 0802002(2021)
Review on Interfacial Metallurgy and Joining Mechanism of Homogeneous and Heterogeneous Nanoscale Material Interconnection
[1] Zhu J D, Zhang T, Yang Y C et al. A comprehensive review on emerging artificial neuromorphic devices[J]. Applied Physics Reviews, 7, 011312(2020).
[2] Jesse S, Borisevich A Y, Fowlkes J D et al. Directing matter: toward atomic-scale 3D nanofabrication[J]. ACS Nano, 10, 5600-5618(2016).
[3] Lee C, Oh Y, Yoon I S et al. Flash-induced nanowelding of silver nanowire networks for transparent stretchable electrochromic devices[J]. Scientific Reports, 8, 2763(2018).
[4] Hu H P, Tang B, Wan H et al. Boosted ultraviolet electroluminescence of InGaN/AlGaN quantum structures grown on high-index contrast patterned sapphire with silica array[J]. Nano Energy, 69, 104427(2020).
[6] Nian Q, Saei M, Xu Y et al. Crystalline nanojoining silver nanowire percolated networks on flexible substrate[J]. ACS Nano, 9, 10018-10031(2015).
[7] Lu H F, Zhang D, Cheng J Q et al. Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach[J]. Advanced Functional Materials, 25, 4211-4218(2015).
[8] Kroemer H. Quasi-electric fields and band offsets: teaching electrons new tricks (Nobel lecture)[J]. ChemPhysChem, 2, 490-499(2001).
[9] Wang R R, Zhai H T, Wang T et al. Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors[J]. Nano Research, 9, 2138-2148(2016).
[10] Xia Y, Xiong Y, Lim B et al. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?[J]. Angewandte Chemie (International Ed. in English), 48, 60-103(2009).
[11] He P, Jiao Z, Wang J et al. Research and application of joining technology at nanometer scale[J]. Transactions of the China Welding Institution, 34, 109-112,118(2013).
[12] Zou G S, Yan J F, Mu F W et al. Recent progress in microjoining and nanojoining[J]. Transactions of the China Welding Institution, 32, 107-112,118(2011).
[13] Zhou Y, Hu A. From microjoining to nanojoining[J]. The Open Surface Science Journal, 3, 32-41(2011).
[14] Zhou Y N. Microjoining and nanojoining[M](2008).
[16] Chen C X, Yan L J, Kong E S W et al. Ultrasonic nanowelding of carbon nanotubes to metal electrodes[J]. Nanotechnology, 17, 2192-2197(2006).
[17] Peng P, Guo W, Zhu Y et al. Nanoscale wire bonding of individual Ag nanowires on Au substrate at room temperature[J]. Nano-Micro Letters, 9, 26(2017).
[18] Qu K, Zhang H, Lan Q Q et al. Realization of the welding of individual TiO2 semiconductor nano-objects using a novel 1D Au80Sn20 nanosolder[J]. Journal of Materials Chemistry C, 3, 11311-11317(2015).
[19] Spencer M J S, Wong K W J, Yarovsky I. Surface defects on ZnO nanowires: implications for design of sensors[J]. Journal of Physics: Condensed Matter, 24, 305001(2012).
[20] Lin L C. Research on femtosecond laser induced joining of nanomaterials and their optical/electrical properties[D]. Beijing: Tsinghua University, 2-18(2017).
[22] Groza J R. Nanosintering[J]. Nanostructured Materials, 12, 987-992(1999).
[23] Wan H, Gui C Q, Chen D et al. Scattering force and heating effect in laser-induced plasmonic welding of silver nanowire junctions[J]. Applied Optics, 59, 2186-2191(2020).
[24] Yang S B, Choi H, Lee D S et al. Improved optical sintering efficiency at the contacts of silver nanowires encapsulated by a graphene layer[J]. Small, 11, 1293-1300(2015).
[25] Cui J L, Wang X W, Barayavuga T et al. Nanojoining of crossed Ag nanowires: a molecular dynamics study[J]. Journal of Nanoparticle Research, 18, 175(2016).
[26] Peng P, Liu L, Gerlich A P et al. Self-oriented nanojoining of silver nanowires via surface selective activation[J]. Particle & Particle Systems Characterization, 30, 420-426(2013).
[27] Comby S, Gunnlaugsson T. Luminescent lanthanide-functionalized gold nanoparticles: exploiting the interaction with bovine serum albumin for potential sensing applications[J]. ACS Nano, 5, 7184-7197(2011).
[28] Kang S J L. Sintering: densification, grain growth and microstructure[M]. Burlington: Elsevier Butterworth-Heinemann(2005).
[31] Ahn J, Seo J W, Kim J Y et al. Self-supplied nano-fusing and transferring metal nanostructures via surface oxide reduction[J]. ACS Applied Materials & Interfaces, 8, 1112-1119(2016).
[32] Fang J X, You H J, Kong P et al. Dendritic silver nanostructure growth and evolution in replacement reaction[J]. Crystal Growth & Design, 7, 864-867(2007).
[33] Wang S, Li M Y, Ji H J et al. Rapid pressureless low-temperature sintering of Ag nanoparticles for high-power density electronic packaging[J]. Scripta Materialia, 69, 789-792(2013).
[34] Zhang H Q, Wang W G, Bai H L et al. Microstructural and mechanical evolution of silver sintering Die attach for SiC power devices during high temperature applications[J]. Journal of Alloys and Compounds, 774, 487-494(2019).
[36] Feng B, Shen D Z, Wang W G et al. Cooperative bilayer of lattice-disordered nanoparticles as room-temperature sinterable nanoarchitecture for device integrations[J]. ACS Applied Materials & Interfaces, 11, 16972-16980(2019).
[37] Jia Q, Zou G S, Wang W G et al. Sintering mechanism of a supersaturated Ag-Cu nanoalloy film for power electronic packaging[J]. ACS Applied Materials & Interfaces, 12, 16743-16752(2020).
[38] da Silva E Z, Faccin G M, Machado T R et al. Connecting theory with experiment to understand the sintering processes of Ag nanoparticles[J]. The Journal of Physical Chemistry C, 123, 11310-11318(2019).
[40] Faccin G M, San-Miguel M A, Andres J et al. Computational modeling for the Ag nanoparticle coalescence process: a case of surface plasmon resonance[J]. The Journal of Physical Chemistry C, 121, 7030-7036(2017).
[41] Buesser B, Gröhn A J, Pratsinis S E. Sintering rate and mechanism of TiO2 nanoparticles by molecular dynamics[J]. The Journal of Physical Chemistry C, 115, 11030-11035(2011).
[42] Schwesig D, Schierning G, Theissmann R et al. From nanoparticles to nanocrystalline bulk: percolation effects in field assisted sintering of silicon nanoparticles[J]. Nanotechnology, 22, 135601(2011).
[43] Asoro M A, Kovar D, Shao-Horn Y et al. Coalescence and sintering of Pt nanoparticles: in situ observation by aberration-corrected HAADF STEM[J]. Nanotechnology, 21, 025701(2010).
[44] Zeng Q H, Yu A B, Lu G Q. Evaluation of interaction forces between nanoparticles by molecular dynamics simulation[J]. Industrial & Engineering Chemistry Research, 49, 12793-12797(2010).
[46] Guo C F, Lan Y C, Sun T Y et al. Deformation-induced cold-welding for self-healing of super-durable flexible transparent electrodes[J]. Nano Energy, 8, 110-117(2014).
[48] Liu Y, Zhang J M, Gao H et al. Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes[J]. Nano Letters, 17, 1090-1096(2017).
[49] Lu Y, Huang J Y, Wang C et al. Cold welding of ultrathin gold nanowires[J]. Nature Nanotechnology, 5, 218-224(2010).
[50] Kim C, Burrows P E, Forrest S R. Micropatterning of organic electronic devices by cold-welding[J]. Science, 288, 831-833(2000).
[51] Cha S H, Park Y, Han J W et al. Cold welding of gold nanoparticles on mica substrate: self-adjustment and enhanced diffusion[J]. Scientific Reports, 6, 32951(2016).
[56] Baffou G, Quidant R, Girard C. Heat generation in plasmonic nanostructures: influence of morphology[J]. Applied Physics Letters, 94, 153109(2009).
[57] Baffou G, Quidant R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat[J]. Laser & Photonics Reviews, 7, 171-187(2013).
[60] González-Rubio G, González-Izquierdo J, Bañares L et al. Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods[J]. Nano Letters, 15, 8282-8288(2015).
[61] Jin B, Sushko M L, Liu Z M et al. In situ liquid cell TEM reveals bridge-induced contact and fusion of Au nanocrystals in aqueous solution[J]. Nano Letters, 18, 6551-6556(2018).
[63] Xia B Y, Wu H B, Yan Y et al. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity[J]. Journal of the American Chemical Society, 135, 9480-9485(2013).
[64] Liao H G, Cui L K, Whitelam S et al. Real-time imaging of Pt3Fe nanorod growth in solution[J]. Science, 336, 1011-1014(2012).
[65] Peng Z M, You H J, Yang H. Composition-dependent formation of platinum silver nanowires[J]. ACS Nano, 4, 1501-1510(2010).
[67] Rogers J A. A diverse printed future[J]. Nature, 468, 177-178(2010).
[69] Peng P, Hu A M, Gerlich A P et al. Joining of silver nanomaterials at low temperatures: processes, properties, and applications[J]. ACS Applied Materials & Interfaces, 7, 12597-12618(2015).
[71] Mafuné F, Kohno J Y, Takeda Y et al. Nanoscale soldering of metal nanoparticles for construction of higher-order structures[J]. Journal of the American Chemical Society, 125, 1686-1687(2003).
[74] Jiao Z, Huang H, Liu L et al. Nanostructure evolution in joining of Al and Fe nanoparticles with femtosecond laser irradiation[J]. Journal of Applied Physics, 115, 134305(2014).
[75] Jiao Z, Sivayoganathan M, Duley W W et al. Formation and characterization of femtosecond-laser-induced subcluster segregated nanoalloys[J]. The Journal of Physical Chemistry C, 118, 24746-24751(2014).
[77] Grouchko M, Roitman P, Zhu X et al. Merging of metal nanoparticles driven by selective wettability of silver nanostructures[J]. Nature Communications, 5, 2994(2014).
[78] Pereira Z S, da Silva E Z. Cold welding of gold and silver nanowires: a molecular dynamics study[J]. The Journal of Physical Chemistry C, 115, 22870-22876(2011).
[79] Lin L C, Zou G S, Liu L et al. Plasmonic engineering of metal-oxide nanowire heterojunctions in integrated nanowire rectification units[J]. Applied Physics Letters, 108, 203107(2016).
[80] Xing S L, Lin L C, Zou G S et al. Two-photon absorption induced nanowelding for assembling ZnO nanowires with enhanced photoelectrical properties[J]. Applied Physics Letters, 115, 103101(2019).
Get Citation
Copy Citation Text
Hongqiang Zhang, Luchan Lin, Songling Xing, Hailin Bai, Peng Peng, hui Kang, Wei Guo, Lei Liu. Review on Interfacial Metallurgy and Joining Mechanism of Homogeneous and Heterogeneous Nanoscale Material Interconnection[J]. Chinese Journal of Lasers, 2021, 48(8): 0802002
Category: laser manufacturing
Received: Dec. 1, 2020
Accepted: Feb. 24, 2021
Published Online: Apr. 13, 2021
The Author Email: Zhang Hongqiang (zhanghq@buaa.edu.cn)