Journal of Quantum Optics, Volume. 28, Issue 1, 8(2022)
Effect of Magnetic Field Spatial Distribution on Free Flight of Bose-Einstein Condensates under High Bias Magnetic Field
[1] [1] ANDERSON M H, ENSHER J R, MATTHEWS M R, et al. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor[J]. Science, 1995, 269(5221): 198-201. DOI: 10.1126/science.269.5221.198.
[2] [2] BRADLEY C C, SACKETT C A, TOLLETT J J, et al. Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions[J]. Phys Rev Lett, 1995, 75(9): 1687. DOI: https://doi.org/10.1103/PhysRevLett.75.1687.
[3] [3] DAVIS K B, MEWES M O, ANDREWS M R, et al. Bose-Einstein Condensation in a Gas of Sodium Atoms[J]. Phys Rev Lett, 1995, 75(22): 3969-3973. DOI: https://doi.org/10.1103/PhysRevLett.75.3969.
[4] [4] ZAREMBA-KOPCZYK K, ZUCHOWSKI, TOMZA M. Magnetically tunable Feshbach resonances in ultracold gases of europium atoms and mixtures of europium and alkali-metal atoms[J]. Phys Rev A, 2018, 98(3): 032704. DOI: 10.1103/PhysRevA.98.032704.
[5] [5] GROSS C, BLOCH I. Quantum simulations with ultracold atoms in optical lattices[J]. Science, 2017, 357(6355): 995-1001. DOI: 10.1126/science.aal3837.
[6] [6] HUANG L H, PENG P, LI D H, et al. Observation of Floquet bands in driven spin-orbit-coupled Fermi gases[J]. Phys Rev A, 2018, 98(1): 013615. DOI: 10.1103/PhysRevA.98.013615.
[7] [7] BANERJEE D, DALMONTE M, MULLER M, et al. Atomic Quantum Simulation of Dynamical Gauge Fields Coupled to Fermionic Matter:From String Breaking to Evolution after a Quench[J]. Phys Rev Lett, 2012, 109(17): 175302. DOI: 10.1103/PhysRevLett.109.175302.
[8] [8] LI FUXIANG, SHAO L B, SHENG L, et al. Simulation of the quantum Hall effect in a staggered modulated magnetic field with ultracold atoms[J]. Phys Rev A, 2008, 78(5): 053617. DOI: 10.1103/PhysRevA.78.053617.
[9] [9] RINGOT J, SZRIFTGISER P, GARREAU J C. Subrecoil Raman spectroscopy of cold cesium atoms[J]. Phys Rev A, 2001, 65(1): 013403. DOI: https://doi.org/10.1103/PhysRevA.65.013403.
[10] [10] THOMAS J E, HEMMER P R, LEIBY C C, et al. Observation of Ramsey Fringes Using a Stimulated, Resonance Raman Transition in a Sodium Atomic Beam[J]. Phys Rev Lett, 1982, 48(13): 867-870. DOI: https://doi.org/10.1103/PhysRevLett.48.867.
[11] [11] BLOCH I, DALIBARD J, ZWERGER W. Many-body physics with ultracold gases[J]. Rev Mod Phys, 2008, 80(3): 885-964. DOI: https://doi.org/10.1103/RevModPhys.80.885.
[12] [12] RAJAGOPAL S V, FUJIWARA K M, SENARATNE R, et al. Quantum Emulation of Extreme Non-Equilibrium Phenomena with Trapped Atoms[J]. Ann Phys, 2017, 529(8): 1700008. DOI: 10.1002/andp.201700008.
[13] [13] TOMADIN A, POLINI M, TOSI M P, et al. Nonequilibrium pairing instability in ultracold Fermi gases with population imbalance[J]. Phys Rev A, 2008, 77(3): 033605. DOI: https://doi.org/10.1103/PhysRevA.77.033605.
[14] [14] DAI S Y, ZHENG F S, LIU K, et al. Cold atom clocks and their applications in precision measurements[J]. Chin Phys B, 2021, 30(3): 013701. DOI:10.1088/1674-1056/abbbee.
[15] [15] HONG F L, MUSHA M, TAKAMOTO M, et al. Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer[J]. Opt Lett, 2009, 34: 692-694. DOI: 10.1364/ol.34.000692.
[16] [16] AIKAWA K, AKAMATSU D, HAYASHI M, et al. Coherent Transfer of Photoassociated Molecules into the Rovibrational Ground State[J]. Phys Rev Lett, 2010, 105(20): 203001. DOI: https://doi.org/10.1103/PhysRevLett.105.203001.
[17] [17] TAKEKOSHI T, DEBATIN M, RAMESHAN R, et al. Towards the production of ultracold ground-state RbCs molecules: Feshbach resonances, weakly bound states, and the coupled-channel model[J]. Phys Rev A, 2012, 85(3): 032506. DOI: https://doi.org/10.1103/PhysRevA.85.032506.
[18] [18] GILBERT J R, ROBERTS C P, ROBERTS J L, et al. Near-resonant light propagation in an absorptive spatially anisotropic ultracold gas[J]. J Opt Soc Am B, 2018, 35: 718-723. DOI: 10.1364/JOSAB.35.000718.
[19] [19] KAMINSKI F, KAMPEL N S, GRIESMAIER A, et al. In-situ dual-port polarization contrast imaging of Faraday rotation in a high optical depth ultracold Rb-87 atomic ensemble[J]. Eur Phys J D, 2012, 66: 227. DOI: 10.1140/epjd/e2012-30038-0.
[20] [20] GERICKE T, WURTZ P, REITZ D, et al. High-resolution scanning electron microscopy of an ultracold quantum gas[J]. Nat Phys, 2008, 4: 949-953. DOI: 10.1038/nphys1102.
[21] [21] REINAUDI G, LAHAYE T, WANG Z, et al. Strong saturation absorption imaging of dense clouds of ultracold atoms[J]. Opt Lett, 2007, 32(21): 3143-3145. DOI: 10.1364/OL.32.003143.
[22] [22] OLF R, FANG F, MARTI G, et al. Thermometry and cooling of a Bose gas to 0.02 times the condensation temperature[J]. Nat Phys, 2015, 11: 720-723. DOI: https://doi.org/10.1038/nphys3408.
[23] [23] BAKR W S, GILLEN J I, PENG A, et al. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice[J]. Nature, 2009, 462: 74-77. DOI: https://doi.org/10.1038/nature08482.
[24] [24] HERMSMEIER R, KLOS J, KOTOCHIGOVA S, et al. Quantum Spin State Selectivity and Magnetic Tuning of Ultracold Chemical Reactions of Triplet Alkali-Metal Dimers with Alkali-Metal Atoms[J]. Phys Rev Lett, 2021, 127(10): 103402. DOI: 10.1103/PhysRevLett.127.103402.
[25] [25] MI C D, NAWAZ K S, WANG P J, et al. Production of dual species Bose-Einstein condensates of K-39 and Rb-87[J]. Chin phys B, 2021, 30(6): 063401. DOI: 10.1088/1674-1056/abee6d.
[26] [26] ROATI G, ZACCANTI M, CATANI J, et al. K-39 Bose-Einstein Condensate with Tunable Interactions[J]. Phys Rev Lett, 2007, 99(1): 010403. DOI: 10.1103/PhysRevLett.99.010403.
[27] [27] WACKER L, JORGENSEN N B, BIRKMOSE D, et al. Tunable dual-species Bose-Einstein condensates of K-39 and Rb-87[J]. Phys Rev A, 2015, 92(5): 053602. DOI: 10.1103/PhysRevA.92.053602.
[31] [31] SHI Z L, LI Z L, WANG P J, et al. Production of 23Na Bose-Einstein condensates in the F=2 state using D2 gray molasses[J]. J Opt Soc Am B, 2021, 38(4): 1229-1234. DOI: https://doi.org/10.1364/JOSAB.414781.
[32] [32] SHI Z L, LI Z L, WANG P J, et al. Sub-Doppler Laser Cooling of 23Na in Gray Molasses on the D2 Line[J]. Chin Phys Lett, 2018, 35(12): 123701. DOI: 10.1088/0256-307X/35/12/123701.
[33] [33] BERGEMAN T, EREZ G, METCALF H J. Magnetostatic trapping fields for neutral atoms [J]. Phys Rev A, 1987, 35: 1535-1546. DOI: https://doi.org/10.1103/PhysRevA.35.1535.
[34] [34] JOHN L, MURRAY R S. Mathematical Handbook of Formulas and Tables[M]. (Third Edition), New York: McGraw-Hill, 1999.
[36] [36] PITAEVSKII L, STRINGARI S. Bose-Einstein Condensation and Superfluidity[M]. United Kingdom: Oxford University Press, 2016.
[37] [37] KNOOP S, SCHUSTER T, SCELLE R, et al. Feshbach spectroscopy and analysis of the interaction potentials of ultracold sodium[J]. Phys Rev A, 2011, 83(4): 042704. DOI: https://doi.org/10.1103/PhysRevA.83.042704.
Get Citation
Copy Citation Text
WANG Xing-yu, SHI Zhen-lian, LI Zi-liang, GU Zheng-yu, WANG Peng-jun, ZHANG Jing. Effect of Magnetic Field Spatial Distribution on Free Flight of Bose-Einstein Condensates under High Bias Magnetic Field[J]. Journal of Quantum Optics, 2022, 28(1): 8
Category:
Received: Dec. 20, 2021
Accepted: --
Published Online: Apr. 21, 2022
The Author Email: WANG Xing-yu (w17836037396@163.com)