Laser & Optoelectronics Progress, Volume. 61, Issue 12, 1200003(2024)

Advancements in Semantic Segmentation Methods for Large-Scale Point Clouds Based on Deep Learning

Da Ai1, Xiaoyang Zhang1、*, Ce Xu1, Siyu Qin1, and Hui Yuan2
Author Affiliations
  • 1School of Communications and Information Engineering, Xi'an University of Posts & Telecommunications, Xi'an 710121, Shaanxi, China
  • 2School of Control Science and Engineering, Shandong University, Jinan 250100, Shandong, China
  • show less
    Figures & Tables(14)
    Deep learning-based semantic segmentation method for large-scale point clouds
    Chronological overview of indirect-based semantic segmentation methods for large-scale point clouds
    Network structure of PolarNet[43]
    Chronological overview of direct-, hybrid-, and weakly supervised-based semantic segmentation methods for large-scale point clouds
    Network structure of BAAF-Net[62]
    Network structure of RPVNet[44]
    Network structure of MPRM[95]
    Example of the common datasets for large-scale point cloud semantic segmentation. (a) S3DIS[98]; (b) ScanNet[99]; (c) Semantic3D[100]; (d) SemanticKITTI[65]; (e) Toronto-3D[103]; (f) nuScenes[104]; (g) Paris-Lille-3D[101]; (h) DALES[105]; (i) SensatUrban[106]
    • Table 1. Common datasets for semantic segmentation of large-scale point clouds

      View table

      Table 1. Common datasets for semantic segmentation of large-scale point clouds

      DatasetYearSpatial sizeNumber of classesNumber of points /106RGBSensorHighlight
      Indoor datasetS3DIS9820166×103 m213273YesMatterportA composition of colored 3D scanned points of interior areas of large buildings
      ScanNet9920171.13×105 m220242YesRGB-DRGB-D video datasets for 3D object classification,semantic voxel labeling
      Outdoor datasetSemantic3D100201784000YesTLSHigh-quality TLS data with higher point density and accuracy compared with other datasets
      SemanticKITTI65201939.2×103 m284549NoMLSReal-world datasets based on automotive LiDAR that can be used to test autonomous driving
      Toronto-3D10320201×103 m878.3YesMLSAvailable for autonomous driving and urban high-definition maps
      nuScenes1042020230.001YesMLSThe first multimodal dataset,containing nighttime and rainy day data,describes object classes,locations,attributes,and scenes
      City datasetISPRS107201291.2NoALSThe reference data includes 2D contours of multiple object types
      Paris-Lille-3D10120181.94×103 m50143NoMLSThe categories are the most numerous,and for each category vehicles can be categorized according to parked,stopped,or moving
      DublinCity10220202×106 m213260NoALSThe first highly dense ALS point cloud dataset and provides hierarchical labeling
      Campus3D10820201.58×106 m224937.1YesUAV photogrammetryPhotogrammetric point cloud datum dataset for enabling hierarchical understanding of outdoor scenes
      DALES105202010×106 m28505NoALSLarge aerial LiDAR dataset with 400 times the number of points and 6 times the resolution of comparable datasets
      SensatUrban10620217.64×106 m2132847YesUAV photogrammetryThe number of labeled points is 3 times more than the largest photogrammetric dataset
    • Table 2. Segmentation results of different models on ScanNet dataset

      View table

      Table 2. Segmentation results of different models on ScanNet dataset

      CategoryMethodmIoU /%
      Multi view-basedTangentConv4943.8
      Pointwise MLP-basedPointNet++5933.9
      Convolution-basedKPConv3868.4
      PointConv7055.6
      FG-Net7368.5
      MSPCNN7156.8
      Weak-supervision-basedSQN(0.1%)656.9
      PSD(1%)9454.7
      MPRM9541.1
      Liu(0.02%)9669.1
      Zhang(10%)9752.0
      Hybrid-basedFusionNet8568.8
      MVPNet8964.1
    • Table 3. Segmentation results of different models on S3DIS dataset

      View table

      Table 3. Segmentation results of different models on S3DIS dataset

      CategoryMethodArea 56-fold
      mIoU /%OA /%mAcc /%mIoU /%OA /%mAcc /%
      Multi-view-basedVMVF4665.4
      TangentConv4952.882.562.2
      Voxel-basedSegCloud5348.957.4
      VV-Net5578.287.8
      Pointwise MLP-basedPointNet1041.149.047.678.656.2
      PointNet++5954.581.0
      PointWeb6060.387.066.666.787.376.1
      RandLA-Net6161.686.770.088.082.0
      SCF-Net5271.688.482.7
      BAAF-Net6272.288.983.1
      Convolution-basedKPConv3867.172.870.6
      PointCNN6657.385.963.965.488.175.6
      ConvPoint6768.288.8
      MappingConvSeg6866.886.8
      DenseKPNet7268.990.873.971.989.379.7
      MSPCNN7167.887.3
      Graph-basedDGCNN7456.184.1
      SPG7858.086.366.562.185.573.0
      SSP+SPG7961.787.968.268.487.978.3
      Weak-supervision-basedXu(10%)9248.0
      PSD(1%)9463.568.0
      Zhang(10%)9764.068.1
      Hybrid-basedFusionNet8567.272.3
      SPVAN8769.788.480.2
    • Table 4. Segmentation results of different models on Semantic3D dataset

      View table

      Table 4. Segmentation results of different models on Semantic3D dataset

      CategoryMethodmIoU /%OA /%
      Multi-view-basedTangent Conv4966.489.3
      SnapNet5059.188.6
      Pointwise MLP-basedPointNet++5963.185.7
      RandLA-Net6177.494.8
      SCF-Net5277.694.7
      BAAF-Net6275.494.9
      Convolution-basedKPConv3874.692.9
      ConvPoint6776.593.4
      FG-Net7378.2
      DenseKPNet7277.994.9
      Graph-basedSPG7873.294.0
      GPGAN7770.894.1
      Weak supervision-basedPSD(1%)9475.8
      SQN(0.1%)672.394.8
      Zhang(10%)9773.394.0
    • Table 5. Segmentation results of different models on SemanticKITTI dataset

      View table

      Table 5. Segmentation results of different models on SemanticKITTI dataset

      CategoryMethodmIoU /%
      Projection-basedSqueezeSeg2429.5
      SqueezeSegV23339.7
      CENet3464.7
      RangeNet53++3552.2
      SqueezeSegV33655.9
      KPRNet3763.1
      MFFNet3968.6
      SalsaNet4045.4
      SalsaNext4159.5
      PolarNet4354.3
      Voxel-basedPVCL5664.0
      Cylindr3D5767.8
      Pointwise MLP-basedPointNet1014.6
      PointNet++5920.1
      RandLA-Net6153.9
      BAAF-Net6259.9
      Convolution-basedKPConv3858.8
      FG-Net7353.8
      Weak supervision-basedSQN(0.1%)650.8
      Hybrid-basedSPVAN8760.8
      SPVNAS8866.4
      AMVNet9065.3
      TORNADO-Net9163.1
      RPVNet4470.3
    • Table 6. Segmentation results of different models on Paris-Lille-3D dataset and nuScenes dataset

      View table

      Table 6. Segmentation results of different models on Paris-Lille-3D dataset and nuScenes dataset

      CategoryMethodMIoU /%
      Paris-Lille-3D datasetnuScenes dataset
      Projection-basedSqueezeSegV23336.9
      RangeNet53++3565.5
      SalsaNext4172.2
      PolarNet 4343.771.0
      Multi-view-basedLIF-Seg4878.2
      Voxel-basedPVCL5673.9
      Cylindr3D5776.1
      Pointwise MLP-basedPointNet1038.6
      PointNet++5932.9
      Convolution-basedKPConv3882.0
      ConvPoint6775.9
      FG-Net7382.3
      MSPCNN7170.5
      Graph-basedDGCNN7452.9
      GPGAN7780.3
      Hybrid-basedSPVNAS8777.4
      AMVNet9076.1
      RPVNet4477.6
    Tools

    Get Citation

    Copy Citation Text

    Da Ai, Xiaoyang Zhang, Ce Xu, Siyu Qin, Hui Yuan. Advancements in Semantic Segmentation Methods for Large-Scale Point Clouds Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2024, 61(12): 1200003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jul. 21, 2023

    Accepted: Sep. 18, 2023

    Published Online: Jun. 5, 2024

    The Author Email: Xiaoyang Zhang (zxy1017254139@163.com)

    DOI:10.3788/LOP231771

    CSTR:32186.14.LOP231771

    Topics