Infrared Technology, Volume. 47, Issue 2, 131(2025)

Temperature Measurement Performance of Reflector Infrared Devices on Low-Reflectivity Objects

Shanjie HUANG1,2, Jinsong ZHAO3, Lingxue WANG1、*, Fangyu XU2, Tengfei SONG2, and Yi CAI1
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China
  • 3Kunming Institute of Physics, Kunming 650223, China
  • show less
    References(20)

    [1] [1] Machin G, Anhalt K, Battuello M, et al. The European project on high temperature measurement solutions in industry (HiTeMS)–a summary of achievements[J]. Measurement, 2016, 78: 168-179.

    [3] [3] CHE Xunjian, XIE Zhi. Surface temperature measurement with unknown emissivity using a two-color pyrometer placed with a reflector[C]//IOP Conference Series: Materials Science and Engineering, 2018, 398(1): 012005.

    [4] [4] Drury M D, Perry K P, Land T. Pyrometers for surface-temperature measurement[J]. Journal of the Iron and Steel Institute, 1951, 169(3): 245-250.

    [5] [5] Becker H B, Wall T F. Effect of specular reflection of hemispherical surface pyrometer on emissivity measurement[J]. Journal of Physics E: Scientific Instruments, 1981, 14(8): 998-1001.

    [8] [8] Turner S F, Metcalfe S F, Mellor A, et al. Accurate thermal imaging of low-emissivity surfaces using approximate blackbody cavities [C]//Thermosense: Thermal Infrared Applications XXXIV of SPIE, 2012, 8354: 309-316.

    [9] [9] Peacock G R. Review of noncontact process temperature measurements in steel manufacturing[C]//SPIE Conference on Thermosense XXI, 1999, 3700: 171-189.

    [10] [10] Ridley I, Beynon T G R. Infrared temperature measurement of bright metal strip using multiple reflection in a roll-strip wedge to enhance emissivity[J]. Measurement, 1989, 7(4): 171-176.

    [11] [11] Krapez J C, Belanger C, Cielo P. A double-wedge reflector for emissivity enhanced pyrometry[J]. Measurement Science and Technology, 1990, 1(9): 857-864.

    [12] [12] Cielo P G, Krapez J C, Lamontagne M, et al. Conical-cavity fiber optic sensor for temperature measurement in a steel furnace[J]. Optical Engineering, 1993, 32(3): 486-493.

    [14] [14] Terada D, Takigawa R, Iuchi T. Automatically emissivity-compensated radiation thermometry [C]//Journal of Physics: Conference Series. IOP Publishing, 2018, 1065(12): 122008.

    [15] [15] Krapez J C, Cielo P G, Lamontagne M. Reflecting-cavity IR temperature sensors: an analysis of spherical, conical, and double-wedge geometries[C]//Infrared Technology and Applications of SPIE, 1990, 1320: 186-201.

    [16] [16] HUANG Shanjie, WANG Lingxue, HU Xu, et al. Research on accurate non-contact temperature measurement method for telescope mirror[J]. Optics Express, 2023, 31(13): 21521-21541.

    [17] [17] ZHU Chengxi, Hobbs M J, Willmott J R. An accurate instrument for emissivity measurements by direct and indirect methods[J]. Measurement Science and Technology, 2020, 31(4): 044007.

    [18] [18] ZHU Chengxi. Design and realisation of high accuracy emissivity measurement instruments for radiation thermometry[D]. Sheffield: University of Sheffield, 2019.

    [19] [19] CHE Xunjian, XIE Zhi. Development of ReFaST pyrometer for measuring surface temperature with unknown emissivity: methodology, implementation, and validation[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1845-1855.

    [20] [20] WANG Junlin, XIE Zhi, CHE Xunjian. A novel accuracy validation method of surface temperature measurement by the ReFaST pyrometer[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 72: 1-9.

    [21] [21] XIE Zhi, WANG Junlin, CHE Xunjian. Research on the methodology and instrument of traceable measurement of surface temperature based on an “ideal plane” model[J]. AIP Advances, 2022, 12(6): 065009.

    [22] [22] Bedford R E, MA C K, CHU Zaixiang, et al. Calculation of the radiant characteristics of a plane diffuse surface covered by a specular hemisphere[J]. Journal of Physics E: Scientific Instruments, 1988, 21(8): 785-791.

    [24] [24] ZHANG Z M, ZHOU Y H. An effective emissivity model for rapid thermal processing using the net-radiation method[J]. International Journal of Thermophysics, 2001, 22: 1563-1575.

    [25] [25] ZHOU Y H, SHEN Y J, ZHANG Z M, et al. A Monte Carlo model for predicting the effective emissivity of the silicon wafer in rapid thermal processing furnaces[J]. International Journal of Heat and Mass Transfer, 2002, 45(9): 1945-1949.

    Tools

    Get Citation

    Copy Citation Text

    HUANG Shanjie, ZHAO Jinsong, WANG Lingxue, XU Fangyu, SONG Tengfei, CAI Yi. Temperature Measurement Performance of Reflector Infrared Devices on Low-Reflectivity Objects[J]. Infrared Technology, 2025, 47(2): 131

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 4, 2024

    Accepted: Mar. 13, 2025

    Published Online: Mar. 13, 2025

    The Author Email: WANG Lingxue (neobull@bit.edu.cn)

    DOI:

    Topics