Infrared and Laser Engineering, Volume. 50, Issue 12, 20210819(2021)

Progress and prospect of ghost imaging in extremely weak light (Invited)

Shuai Sun1,2, Longkun Du1,2, Dong Li1,2, Yuegang Li1,2, Huizu Lin1,2, and Weitao Liu1,2、*
Author Affiliations
  • 1College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
  • 2Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha 410073, China
  • show less
    References(73)

    [1] Lichtman J W, Conchello J A. Fluorescence microscopy[J]. Nature Methods, 2, 910-919(2005).

    [2] Gardner J P, Mather J C, Clampin M, et al. The james webb space telescope[J]. Space Science Reviews, 123, 485-606(2006).

    [3] Kobayashi M, Kikuchi D, Okamura H. Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm[J]. PLoS One, 4, e6256(2009).

    [4] Cao W, Che R, Ye D. An illumination-independent edge detection and fuzzy enhancement algorithm based on wavelet transform for non-uniform weak illumination images[J]. Pattern Recognition Letters, 29, 192-199(2008).

    [5] Yeom S, Javidi B, Watson E. Photon counting passive 3 D image sensing for automatic target recognition[J]. Optics Express, 13, 9310-9330(2005).

    [6] Johnson S D, Moreau P A, Gregory T, et al. How many photons does it take to form an image?[J]. Applied Physics Letters, 116, 260504(2020).

    [7] You L, Yang X, He Y, et al. Jitter analysis of a superconducting nanowire single photon detector[J]. Aip Advances, 3, 072135(2013).

    [8] You L. Superconducting nanowire single-photon detectors for quantum information[J]. Nanophotonics, 9, 2673-2692(2020).

    [9] Zhou Hui, Zhang Chengjun, Lü Chaolin, et al. Recent progress of imaging applications based on superconducting nanowire single-photon detectors[J]. Laser & Optoelectronics Progress, 58, 1011005(2021).

    [10] Kong Lingdong, Zhao Qingyuan, Tu Xuecou, et al. Progress and applications of superconducting nanowire delay-line single-photon imagers[J]. Laser & Optoelectronics Progress, 58, 1011002(2021).

    [11] Sciamanda R J. Dirac and photon interference[J]. American Journal of Physics, 37, 1128-1130(1969).

    [12] Kirmani A, Venkatraman D, Shin D, et al. First-photon imaging[J]. Science, 343, 58-61(2014).

    [13] Li Zhengping, Ye Juntian, Xin Huang, et al. Single-photon imaging over 200 km[J]. Optica, 8, 344-349(2021).

    [14] Morris P A, Aspden R S, Bell J E C, et al. Imaging with a small number of photons[J]. Nature Communications, 6, 5913(2015).

    [15] Aspden R S, Tasca D S, Boyd R W, et al. EPR-based ghost imaging using a single-photon-sensitive camera[J]. New Journal of Physics, 15, 073032(2013).

    [16] Zhu Y, Shi J H, Wu X Y, et al. Photon-limited non-imaging object detection and classification based on single-pixel imaging system[J]. Appl Phys B, 126, 21(2020).

    [17] Ma S, Hu C Y, Wang C L, . et al. Multi-scale ghost imaging LiDAR via sparsity constraints using push-broom scanning[J]. Opt Communication, 448, 89-92(2019).

    [18] Chen M L, Li E R, Han S S. Application of multi-correlation-scale measurement matrices in ghost imaging via sparsity constraints[J]. App Opt, 53, 13(2014).

    [19] Aβmann M, Bayer M. Compressive adaptive computational ghost imaging[J]. Scientific Reports, 3, 1545(2013).

    [20] Yu W K, Li M F, Yao X R, et al. Adaptive compressive ghost imaging based on wavelet trees and sparse representation[J]. Optics Express, 22, 7133-7144(2014).

    [21] Gu J H, Sun S, Xu Y K, et al. Feedback ghost imaging by gradually distinguishing and concentrating onto the edge area[J]. Chin Opt Lett, 19, 0411(2021).

    [22] Sun S, Liu W T, Lin H Z, et al. Multi-scale adaptive computational ghost imaging[J]. Scientific Reports, 6, 37013(2016).

    [23] Sun S, Lin H Z, Xu Y K, et al. Tracking and imaging of moving objects with temporal intensity difference correlation[J]. Optics Express, 27, 27851-27861(2019).

    [24] Xu Y K, Liu W T, Zhang E F, et al. Is ghost imaging intrinsically more powerful against scattering?[J]. Opti Express, 23, 32993-33000(2015).

    [25] Wu Yongbo, Yang Zhihui, Tang Zhilie. Experimental study on anti-disturbance ability of underwater ghost imaging[J]. Laser & Optoelectronics Progress, 58, 0611002(2021).

    [26] Liu Weitao, Sun Shuai, Hu Hongkang, et al. Progress and prospect for ghost imaging of moving objects[J]. Laser & Optoelectronics Progress, 58, 1011001(2021).

    [27] Gong Wenlin, Sun Jianfeng, Deng Chenjin, et al. Research progress on single-pixel imaging lidar via coherent detection[J]. Laser & Optoelectronics Progress, 58, 1011003(2021).

    [28] Fu Xiquan, Huang Xianwei, Tan Wei, et al. Correlation imaging research under disturbance of channel airflow[J]. Laser & Optoelectronics Progress, 58, 1011017(2021).

    [29] [29] Goodman, Joseph W. Statistical Optics[M]. New Yk: John Wiley & Sons, 2015.

    [30] Gatti A, Bache M, Magatti D, et al. Coherent imaging with pseudo-thermal incoherent light[J]. Journal of Modern Optics, 53, 739-760(2006).

    [31] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).

    [32] Hardy N D, Shapiro J H. Computational ghost imaging versus imaging laser radar for three-dimensional imaging[J]. Physical Review A, 87, 023820(2013).

    [33] Liu X F, Chen X H, Yao X R, et al. Lensless ghost imaging with sunlight[J]. Opt Lett, 39, 2314-2317(2014).

    [34] Gong W, Zhao C, Yu H, et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Scientific Reports, 6, 26133(2016).

    [35] Gong W, Han S. Correlated imaging in scattering media[J]. Optics Letters, 36, 394-396(2011).

    [36] [36] Shih Y. Classical, Semiclassical Quantum Noise[M].Berlin: Springs, 2012: 169222.

    [37] Shih Y. The physics of ghost imaging: nonlocal interference or local intensity fluctuation correlation?[J]. Quantum Information Processing, 11, 995-1001(2012).

    [38] Shih Y. The physics of turbulence-free ghost imaging[J]. Technologies, 4, 39(2016).

    [39] [39] Klyshko D N. Photon Nonlinear Optics [M]. New Yk: Gdon Breach Science Press, 1988.

    [40] Bornman N, Agnew M, Zhu F, et al. Ghost imaging using entanglement-swapped photons[J]. Quantum Information, 5, 1-6(2019).

    [41] Zerom P, Chan K W C, Howell J C, et al. Entangled-photon compressive ghost imaging[J]. Physical Review A, 84, 061804(2011).

    [42] Li J, Gao W, Qian J, et al. Robust entangled-photon ghost imaging with compressive sensing[J]. Sensors, 19, 192(2019).

    [43] Dixon P B, Howland G A, Chan K W C, et al. Quantum ghost imaging through turbulence[J]. Physical Review A, 83, 051803(2011).

    [44] Schori A, Shwartz S. X-ray ghost imaging with a laboratory source[J]. Optics Express, 25, 14822-14828(2017).

    [45] Zhang A X, He Y H, Wu L A, et al. Tabletop x-ray ghost imaging with ultra-low radiation[J]. Optica, 5, 374-377(2018).

    [46] Deng Chenjin, Gong Wenlin, Han Shensheng. Pulse-compression ghost imaging lidar via coherent detection.[J]. Optics Express, 24, 25983-25994(2016).

    [47] Deng Chenjin, Pan Long, Wang Chenglong, et al. Performance analysis of ghost imaging lidar in background light environment[J]. Photonics Research, 431-435(2017).

    [48] Pan Long, Deng Chenjin, Bo Zunwang, et al. Experimental investigation of chirped amplitude modulation heterodyne ghost imaging.[J]. Optics Express, 28, 20808-20816(2020).

    [49] Li Dong, Yang Ding, Sun Shuai, et al. Enhancing robustness of ghost imaging against environment noise via cross-correlation in time domain.[J]. Optics Express, 29, 31068-31077(2021).

    [50] Yang Ying, Shi Jianhong, Cao Fei, . et al. Computational imaging based on time-correlated single-photon-counting technique at low light level[J]. Applied Optics, 54, 009277(2015).

    [51] Liu Y, Shi J, Zeng G. Single-photon-counting polarization ghost imaging[J]. Applied Optics, 55, 10347(2016).

    [52] Liu X, Shi J, Wu X, et al. Fast first-photon ghost imaging[J]. Scientific Reports, 8, 5012(2018).

    [53] Liu X, Shi J, Sun L, et al. Photon-limited single-pixel imaging[J]. Optics Express, 28, 8132(2020).

    [54] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429(1995).

    [55] Aspden R S, Morris P A, He R, et al. Heralded phase-contrast imaging using an orbital angular momentum phase-filter[J]. Journal of Optics, 18, 055204(2016).

    [56] Tasca D S, Aspden R S, Morris P A, et al. The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD camera[J]. Optics Express, 21, 30460-30473(2013).

    [57] Liu Shikai, Zhou Zhiyuan, Shi Baosen. Progress on optical image edge detection[J]. Laser & Optoelectronics Progress, 58, 1011014(2021).

    [58] Brida G, Genovese M, Berchera I R. Experimental realization of sub-shot-noise quantum imaging[J]. Nature Photonics, 4, 227(2010).

    [59] Genovese M. Real applications of quantum imaging[J]. Journal of Optics, 18, 073002(2016).

    [60] Samantaray N, Ruo-Berchera I, Meda A, et al. Realization of the first sub-shot-noise wide field microscope[J]. Light: Science & Applications, 6, e17005(2017).

    [61] Valencia Alejandra, Scarcelli Giuliano, D'Angelo Milena, et al. Two-photon imaging with thermal light.[J]. Physical Review Letters, 94, 063601(2005).

    [62] Yang Dongyue, Wu Guohua, Li Junhui, et al. Image recovery of ghost imaging with sparse spatial frequencies[J]. Optics Letters, 45, 403288(2020).

    [63] Sun Shuai, Liu Weitao, Gu Junhao, et al. Ghost imaging normalized by second-order coherence.[J]. Optics Letters, 44, 5993-5996(2019).

    [64] Wang Fei, Wang Hao, Wang Haichao, et al. Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging.[J]. Optics Express, 27, 25560-25572(2019).

    [65] Hu Hongkang, Sun Shuai, Lin Huizu, et al. Denoising ghost imaging under a small sampling rate via deep learning for tracking and imaging moving objects.[J]. Optics Express, 28, 37284-37293(2020).

    [66] He Y C, Wang G, Dong G X. . et al. Ghost imaging based on deep learning[J]. Sci Rep, 8, 6469(2018).

    [67] Wang F, Wang H, Wang H C, . et al. Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging[J]. Opt Express, 27, 25560-25572(2019).

    [68] Rizvi S, Cao J, Zhang K Y, et al. DeepGhost: real-time computational ghost imaging via deep learning[J]. Sci Rep, 10, 1140(2020).

    [69] Yang Y, Shi J, Cao F, . et al. Computational imaging based on time-correlated single-photon-counting technique at low light level[J]. Applied Optics, 54, 9277-9283(2015).

    [70] Liu H C, Yang H, Xiong J, et al. Positive and negative ghost imaging[J]. Physical Review Applied, 12, 034019(2019).

    [71] Li G L, Zhao Y, Yang Z H, et al. Positive–negative corresponding normalized ghost imaging based on an adaptive threshold[J]. Laser Physics Letters, 13, 115202(2016).

    [72] Yang H, Wu S, Wang H B, et al. Probability theory in conditional-averaging ghost imaging with thermal light[J]. Physical Review A, 98, 053853(2018).

    [73] Cao D Z, Zhang S H, Zhao Y, . et al. Zero-photon imaging under extremely low-light illumination[J]. arXiv preprint, 2108, 01037(2021).

    CLP Journals

    [1] LIN Huizu, LIU Weitao, SUN Shuai, DU Longkun, CHANG Chen, LI Yuegang. Progress of ghost imaging algorithms[J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 863

    Tools

    Get Citation

    Copy Citation Text

    Shuai Sun, Longkun Du, Dong Li, Yuegang Li, Huizu Lin, Weitao Liu. Progress and prospect of ghost imaging in extremely weak light (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210819

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue—Single-pixel imaging

    Received: Sep. 1, 2021

    Accepted: Nov. 9, 2021

    Published Online: Feb. 9, 2022

    The Author Email:

    DOI:10.3788/IRLA20210819

    Topics