Laser & Optoelectronics Progress, Volume. 58, Issue 14, 1401001(2021)

Scene Classification of Remote Sensing Images Based on RCF Network

Shuxin Zhu1, Zijun Zhou1, Xingjian Gu1, Shougang Ren1、*, and Huanliang Xu1,2
Author Affiliations
  • 1College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
  • 2National Engineering and Technology Center for Information Agriculture, Nanjing, Jiangsu 210095, China
  • show less
    Figures & Tables(12)
    Architecture of RCF
    Architecture of ResNet50-CBAM
    Architecture of FCAM
    Scene images of AID dataset
    Scene images of NWPU-RESISC45 dataset
    Learning rate versus number of cycles
    Accuracy and loss value versus number of cycles. (a)(b) Training proportion is 20% in AID dataset; (c)(d) training proportion is 50% in AID dataset; (e)(f) training proportion is 10% in NWPU-RESISC45 dataset; (g)(h) training proportion is 20% in NWPU-RESISC45 dataset
    Comparison of visualization results of class activation map
    • Table 1. Comparison of test accuracy and number of parameters using four networks on test set in the AID and NWPU-RESISC45 datasets

      View table

      Table 1. Comparison of test accuracy and number of parameters using four networks on test set in the AID and NWPU-RESISC45 datasets

      GroupModelParams /106FLOPs/GFLOPsAccuracy /%
      AIDNWPU-RESISC45
      Experiment IExperiment IIExperiment IExperiment II
      1ResNet5025.564.1092.35±0.3395.04±0.2188.44±0.2591.30±0.50
      2ResNet50-CBAM26.084.1193.57±0.4195.68±0.2589.53±0.2392.32±0.42
      3ResNet50-FCAM26.576.8493.21±0.2195.73±0.1590.11±0.2092.52±0.43
      4RCF27.096.8493.76±0.3296.17±0.4790.50±0.1393.27±0.11
    • Table 2. Comparison of average training time and average test time per epoch using four networks on AID and NWPU-RESISC45 datasets

      View table

      Table 2. Comparison of average training time and average test time per epoch using four networks on AID and NWPU-RESISC45 datasets

      GroupModelAIDNWPU-RESISC45
      Experiment IExperiment IIExperiment IExperiment II
      Train time /sTest time /sTrain time /sTest time /sTrain time /sTest time /sTrain time /sTesttime /s
      1ResNet5030.6517.3343.2311.3478.0757.2687.6149.23
      2ResNet50-CBAM32.7018.1546.1012.2180.2759.4893.5152.75
      3ResNet50-FCAM48.3428.9765.1218.96126.8197.70144.3587.78
      4RCF51.6231.1568.7619.86134.61104.35153.2792.95
    • Table 3. Classification accuracy on AID dataset unit: %

      View table

      Table 3. Classification accuracy on AID dataset unit: %

      AlgorithmExperiment IExperiment II
      salM3LBP-CLM86.92±0.3589.76±0.45
      GoogleNet91.37±0.3593.99±0.37
      VGG-VD1692.06±0.2994.74±0.51
      ARCNet88.75±0.4093.10±0.55
      scale-attention network92.53±0.3395.72±0.27
      RCF93.76±0.3296.17±0.47
    • Table 4. Classification accuracy on NWPU-RESISC45 dataset unit: %

      View table

      Table 4. Classification accuracy on NWPU-RESISC45 dataset unit: %

      AlgorithmExperiment IExperiment II
      BoCF82.65±0.3184.32±0.17
      GoogleNet86.74±0.3989.67±0.27
      VGG-VD1688.02±0.1491.07±0.12
      Integrated CNN88.47±0.0092.53±0.00
      scale-attention network88.92±0.2992.25±0.18
      RCF90.50±0.1393.27±0.11
    Tools

    Get Citation

    Copy Citation Text

    Shuxin Zhu, Zijun Zhou, Xingjian Gu, Shougang Ren, Huanliang Xu. Scene Classification of Remote Sensing Images Based on RCF Network[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1401001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Sep. 15, 2020

    Accepted: Nov. 14, 2020

    Published Online: Jun. 30, 2021

    The Author Email: Shougang Ren (rensg@njau.edu.cn)

    DOI:10.3788/LOP202158.1401001

    Topics