Optical Technique, Volume. 50, Issue 2, 174(2024)
Band selection of hyperspectral image based on mutual information calculation under the Spark platform
[1] [1] Sun K, Geng X, Ji L. A new sparsity-based band selection method for target detection of hyperspectral image[J]. IEEE Geosci. Remote Sens. Lett,2015,12(2):329—333.
[2] [2] Li S, Qi H. Sparse representation based band selection for hyperspectral images[C]∥IEEE International Conference on Image Processing. Brussels, Belgium: IEEE,2011:2693—2696.
[3] [3] Y Cai, Z Zhang, X Liu, Z Cai. Efficient graph convolutional self-representation for band selection of hyper spectral image[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,13:4869—4880.
[4] [4] Pan Z, Healey G, Prasad M, et al. Face recognition in hyperspectral images[J]. IEEE Trans. Pattern Anal. Mach. Intell,2003,25(12):1552—1560.
[5] [5] Lu G, Fei B . Medical hyperspectral imaging: a review[J]. J. Biomed,2014,19(1):010901.
[6] [6] Lori Mann Bruce, Cliff H Koger, Jiang Li. Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(10):2331—2338.
[7] [7] Kumar S, Ghosh J, Crawford M M. Best-bases feature extraction algorithms for classification of hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(7):1370—1379.
[8] [8] Hsu P H. Feature extraction of hyperspectral images using wavelet and matching pursuit[J]. Isprs Journal of Photogrammetry and Remote Sensing,2007,62(2):78—92.
[9] [9] Serpico S B, Bruzzone L. A new search algorithm for feature selection in hyperspectral remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,39(7):1360—1367.
[10] [10] VPal M, Foody G M . Feature selection for classification of hyperspectral data by SVM[J]. IEEE Transactions on Geoscience and Remote Sensing,2010,48(5):2297—2307.
[11] [11] Nirmal Keshava. Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries[J]. IEEE Transactions on Geoscience and Remote Sensing,2004,42(7):1552—1565.
[12] [12] Chang C I, Qian D, Sun T L, et al. A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification[J]. Geoscience & Remote Sensing IEEE Transactions on,1999,37(6):2631—2641.
[13] [13] Geng X, Sun K, Ji L, et al. A fast volume-gradient-based band selection method for hyperspectral image[J]. IEEE Transactions on Geoscience and Remote Sensing,2014,52(11):7111—7119.
[14] [14] Gong M, Zhang M, Yuan Y, et al. Unsupervised band selection based on evolutionary multiobjective optimization for hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing,2016,54(1):544—557.
[15] [15] Martinez-Uso A, Pla F, Sotoca J M, et al. Clustering-Based hyperspectral band selection using information measures[J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(12):4158—4171.
[16] [16] Baisantry M, Sao A K, Shukla D P. Discriminative spectral–spatial feature extraction-based band selection for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:1—14.
[17] [17] Li Fangfei. Research on feature selection for hyper spectral images[D]. Dalian: Liaoning Normal University,2019.
[18] [18] Fengjie. Terrain classification of remote sensing images via soft computing and mutual information theory[D]. Xi’an: Xidian University,2014.
[19] [19] Li Junli. Categorical outlier detection and applications in spark cluster[D]. Taiyuan:Taiyuan University of Science and Technology,2020.
[20] [20] Meng X, Bradley J, Yavuz B, et al. Mllib: machine learning in apache spark[J]. Mach.Learn.Res.2015,17(1):1235—1241.
Get Citation
Copy Citation Text
LI Junli, MA Junhong. Band selection of hyperspectral image based on mutual information calculation under the Spark platform[J]. Optical Technique, 2024, 50(2): 174