Journal of the Chinese Ceramic Society, Volume. 51, Issue 4, 957(2023)

Research Progress on Microwave Composite Substrates

YAO Xiaogang*, PENG Haiyi, and LIN Huixin
Author Affiliations
  • [in Chinese]
  • show less
    References(47)

    [1] [1] WANG T Y, LI X F, ZHANG B Y, et al. Basic reason for the accumulation of charge on the surface of polymer dielectrics[J]. Sci China Mater, 2022, 70: 104544.

    [2] [2] DANG Z M, YUAN J K, ZHA J W, et al. Fundamentals, processes and applications of high-permittivity polymer-matrix composite[J]. Prog Mater Sci, 2012, 57(4): 660-723.

    [3] [3] WANG J C, SHEN Z H, JIANG J Y, et al. High-throughput finite-element design of dielectric composites for high-frequency copper clad laminates[J]. Compos Sci Technol, 2022, 225: 109517.

    [4] [4] ZHANG R, LIU J W, WANG Y Y, et al. Flexible wearable composite antennas for global wireless communication systems[J]. Sensors, 2021, 21(8): 6083.

    [5] [5] PALANI H P, JAYAMANI E, SOON K H. A comprehensive review on dielectric composites: Classification of dielectric composites[J]. Renew Sustain Energy Rev, 2022, 157: 112075.

    [6] [6] KRUPKA J, SHAKHIL P G, ARUN NS, et al. Low loss polypropylene-silicon composites for millimetre wave applications[J]. Mater Res Bull, 2018, 104: 143-148.

    [7] [7] YU X X, XUE M S, YIN Z Z, et al. Flexible boron nitride composite membranes with high thermal conductivity, low dielectric constant and facile mass productio[J]. Compos Sci Technol, 2022, 222: 109400.

    [11] [11] KUO C C, LIN Y C, CHEN Y C, et al. Correlating the molecular structure of polyimides with the dielectric constant and dissipation factor at a high frequency of 10 GHz[J]. ACS Appl Polym Mater,2021, 3(1): 362-371.

    [12] [12] GUO W J, MA Z Y, CHEN Y G, et al. Lattice dynamics and terahertz response of microwave dielectrics: A case study of Al-doped Ca0.6Sm0.27TiO3 ceramics[J]. J Eur Ceram Soc, 2022, 42(12): 4953-4961.

    [13] [13] SEBASTIAN M T, JANTUNUN H. Polymer-ceramic composites of 0-3 connectivity for circuits in electronics: a review[J]. Int J Appl Ceram Technol, 2010, 7(4): 415-434.

    [14] [14] PENG H Y, REN H S, DANG M Z, et al. Novel high dielectric constant and low loss PTFE/CNT composites[J]. Ceram Int, 2018, 44(14): 16556-16560.

    [15] [15] PENG H Y, HUANG Y C, DENG S F, et al. Investigation on a novel polysilylaryl-enyne/Ca0.7La0.2TiO3 composite with an ultra-high dielectric constant and excellent temperature resistance[J]. Compos Sci Technol, 2022, 200: 108447.

    [16] [16] WANG B, SHANG Y R, MA Z, et al. Non-porous ultra low dielectric constant materials based on novel silicon-containing cycloolefin copolymers with tunable performance[J]. Polymer, 2017, 116(SI): 105-112.

    [17] [17] PENG H Y, REN H S, DANG M Z, et al. The dimensional effect of MgTiO3 ceramic filler on the microwave dielectric properties of PTFE/MgTiO3 composite with ultra-low dielectric loss[J]. J Mater Sci: Mater Electron, 2019, 30(7): 6680-6687.

    [18] [18] JI Y, BAI Y, LIU X B, et al. Progress of liquid crystal polyester (LCP) for 5G application[J]. Adv Ind Eng Polym Res, 2020, 3(4): 160-174.

    [19] [19] RAJESH S, MULALI K P, JANTUNEN H, et al. The effect of filler on the temperature coefficient of the relative permittivity of PTFE/ceramic composites[J]. Physica B, 2011, 406(22): 4312-4316.

    [20] [20] WANG H, ZHOU F M, GUO J M, et al. Modified BCZN particles filled PTFE composites with high dielectric constant and low loss for microwave substrate applications[J]. Ceram Int, 2020, 46(6): 7531-7540.

    [21] [21] LUO F C, TANG B, FANG Z Y, et al. Effects of coupling agent on dielectric properties of PTFE based and Li2Mg3TiO6 filled composites[J]. Ceram Int, 2019, 45(16): 20458-20464.

    [22] [22] WANG H, ZHOU F M, GUO J M, et al. Surface-modified Zn0.5Ti0.5NbO4 particles filled polytetrafluoroethylene composite with extremely low dielectric loss and stable temperature dependence[J]. J Adv Ceram, 2020, 9(6): 726-738.

    [23] [23] LUO F C, TANG B, YUAN Y, et al. Microstructure and microwave dielectric properties of Na1/2Sm1/2TiO3 filled PTFE, an environmental friendly composites[J]. Appl Surface Sci, 2018, 436: 900-906.

    [24] [24] LI Z T, YUAN Y, YAO M H, et al. Synthesis and characterization of PTFE/(NaxLi1-x)0.5Nd0.5TiO3 composites with high dielectric constant and high temperature stability for microwave substrate applications[J]. Ceram Int, 2019, 45(17): 22015-22021.

    [25] [25] DAI J H, LIANG F, ZHANG R, et al. Study on modification of ZnNb2O6/PTFE microwave composites with LCP fiber[J]. Ceram Int, 2022, 48(2): 2362-2368.

    [26] [26] NISA V S, RAJESH S, MURALI K P, et al. Preparation, characterization and dielectric properties of temperature stable SrTiO3/PEEK composites for microwave substrate applications[J]. Compos Sci Technol, 2008, 68(1): 106-112.

    [28] [28] LI M, WANG M J, HOU X, et al. Highly thermal conductive and electrical insulating polym composites with boron nitride[J]. Compos Part B, 2020, 184: 107746.

    [29] [29] ANJANA P S, DEEPU V, UMA S, et al. Dielectric, thermal, and mechanical properties of CeO2-filled HDPE composites for microwave substrate applications[J]. J Polym Sci Part B-Polymer Phys, 2010, 48(9): 998-1008.

    [30] [30] LIU L, XIANG D P, WU L Q. Improved thermal conductivity of ceramic-epoxy composites by constructing vertically aligned nanoflower-like AlN network[J]. Ceram Int, 2022, 48(8): 10438-10446.

    [31] [31] ZHAO L H, CHEN Z J, REN J W, et al. Synchronously improved thermal conductivity and dielectric constant for epoxy composites by introducing functionalized silicon carbide nanoparticles and boron nitride microspheres[J]. J Colloid Interface Sci, 2022, 627: 205-214.

    [32] [32] LI Y Y, ZHOU J, SHEN J, et al. Ultra-low permittivity HSM/PTFE composites for high-frequency microwave circuit application[J]. J Mater Sci: Mater Electron, 2022, 33(13): 10096-10103.

    [33] [33] JIN W, LI A Y, LI Y Y, et al. Enhancing high-frequency dielectric and mechanical properties of SiO2/PTFE composites from the interface fluorination[J]. Ceram Int, 2022, 48(19): 28512-28518.

    [34] [34] WANG H, YANG H, WANG Q L, et al. Surface-modified Li3Mg2NbO6 ceramic particles and hexagonal boron nitride sheets filled PTFE composites with high through-plane thermal conductivity and extremely low dielectric loss[J]. Compos Commun, 2022, 22: 100523.

    [35] [35] DING S G, PENG H Y, REN H S, et al. Investigation on preparation and properties of novel polyphenylene oxide based composites by injection molding[J]. Ceram Int, 2020, 46(18): 29067-29072.

    [36] [36] LIU Y H, PENG H Y, YAO X G, et al. Study on properties of ultra-low dielectric loss mPPO/MTCLT composites prepared by injection molding[J]. J Adv Dielectr, 2022, 12(3): 2250004.

    [37] [37] WANG H, WANG Q L, ZHANG Q L, et al. High thermal conductive composite with low dielectric constant and dielectric loss accomplished through flower-like Al2O3 coated BNNs for advanced circuit substrate applications[J]. Compos Sci Technol, 2021, 216: 109048.

    [38] [38] NOEl C, NAVARD P. Liquid crystal polymers[J]. Prog Polym Sci, 1991, 16: 55-110.

    [39] [39] ZHANG S Y, FU T, GONG Y, et al. Design and synthesis of liquid crystal copolyesters with high-frequency low dielectric loss and inherent flame retardancy[J]. Chin Chem Lett, 2023, 34(5): 107615.

    [40] [40] ZOU G, GRONQVIST H, STARSKI J P, et al. Characterization of liquid crystal polymer for high frequency system-in-a-package applications[J]. IEEE Trans Adv Packag, 2002, 25(4): 503-508

    [41] [41] THOMPSON D C, TANTOT N, JAHHAGEAS H, et al. Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz[J]. IEEE Trans Microw Theor Tech, 2004, 52(4): 1343-1352.

    [42] [42] NAKANO A, NATABE Y, HIGASHIMURA H. A new poly(arylene oxide) with an extremely low dielectric constant as a fully aromatic hydrocarbon-type polymer[J]. Polymer, 2021, 237: 124345.

    [43] [43] WU B, MAO X, LI R, et al. Improved dielectric and thermal properties of core-shell structured SiO2/polyolefin polymer composites for high-frequency copper clad laminates[J]. Appl Surface Sci, 2021, 544: 148911.

    [44] [44] LUO F C, ZHANG S R, TANG B, et al. Newly developed polytetrafluoroethylene composites based on F8261-modified Li2Mg2.88Ca0.12TiO6 powder[J]. J Alloys Compds, 2019, 803: 145-152.

    [45] [45] LUO F C, TANG B, ZHANG Z X, et al. Polytetrafluoroethylene based, F8261 modified realization of Li2SnMg0.5O3.5 filled composites[J]. Appl Surface Sci, 2020, 503: 144088.

    [46] [46] REN J Q, YANG P, PENG Z J, et al. Novel Al2Mo3O12-PTFE composites for microwave dielectric substrates[J]. Ceram Int, 2021, 47(15): 20867-20874.

    [47] [47] QI Y Y, LUO Q, SHEN J, et al. Surface modification of BMN particles with silane coupling agent for composites with PTFE[J]. Appl Surface Sci, 2017, 414: 147-152.

    [48] [48] LUO F C, YUAN Y, TANG B, et al. The effects of TiO2 particle size on the properties of PTFE/TiO2 composites[J]. J Mater Sci Chem Eng, 2017, 5: 53-60.

    [49] [49] WANG C Y, WU B, MAO X, et al. The Effects of concentration and particle size of TiO2 on the dielectric properties of polyolefin-based microwave substrates[J]. Chem Select, 2020, 5(4): 1464 -1469.

    [50] [50] WU B Y, LIU H B, FU R L, et al. Epoxy-matrix composite with low dielectric constant and high thermal conductivity fabricated by HGMs/Al2O3 co-continuous skeleton[J]. J Alloys Compd, 2021, 869: 159332.

    [51] [51] PAN C, KOU K C, ZHANG Y, et al. Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles [J]. Compos Part B, 2018, 153: 1-8.

    CLP Journals

    [1] YU Zaizai, LI Ling, LIU Jian, WANG Yang, QI Luming, SONG Tao. Preparation and High-Frequency Dielectric Properties of Micron-Sized Spherical TiO2 and Epoxy Matrix Composites[J]. Journal of the Chinese Ceramic Society, 2023, 51(10): 2634

    Tools

    Get Citation

    Copy Citation Text

    YAO Xiaogang, PENG Haiyi, LIN Huixin. Research Progress on Microwave Composite Substrates[J]. Journal of the Chinese Ceramic Society, 2023, 51(4): 957

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jul. 8, 2022

    Accepted: --

    Published Online: Apr. 15, 2023

    The Author Email: YAO Xiaogang (yaoxiaogang@mail.sic.ac.cn)

    DOI:

    CSTR:32186.14.

    Topics