Journal of Quantum Optics, Volume. 31, Issue 1, 10501(2025)

Theoretical Calculation of the Tune-out Wavelength in the Terahertz Band of Cesium Rydberg Atoms

LIU Tingting1, LIU Jia1, LIU Zhihui2, ZHANG Yaya1, and HAN Yashuai3、*
Author Affiliations
  • 1Shanxi Institute of Science and Technology, Jincheng, 048000, China
  • 2State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
  • 3College of Physics and Electronic Information, Anhui Normal University, Wuhu 241000, China
  • show less
    References(38)

    [1] [1] WU F F, DENG K, LU Z H. Tune-out wavelengths for the 23S1 state of the Li+ ion[J]. Physical Review A, 2022, 106(4):042816. DOI: 10.1103/PhysRevA.106.042816.

    [2] [2] FALLON A J, MOAN E R, LARSON E A, et al. Measurement of the 87Rb D-line vector tune-out wavelength[J]. Physical Review A, 2022, 105(3): L030802. DOI: 10.1103/PhysRevA.105.L030802.

    [3] [3] LEONARD R H, FALLON A J, SACKETT C A, et al. High-precision measurements of the 87Rb D-line tune-out wavelength[J]. Physical Review A, 2017, 95(5):059901. DOI: 10.1103/PhysRevA.95.059901.

    [4] [4] ARORA B, SAFRONOVA M S, CLARK C W. Tune-out wavelengths of alkali-metal atoms and their applications[J]. Physical Review A, 2011, 84(4):043401. DOI: 10.1103/PhysRevA.84.043401.

    [5] [5] SCHMIDT F, MAYER D, HOHMANN M, et al. Precision measurement of the 87Rb tune-out wavelength in the hyperfine ground state F=1 at 790 nm[J]. Physical Review A, 2016, 93(2):022507. DOI: 10.1103/PhysRevA.93.022507.

    [6] [6] JEFFERTS S R, HEAVNER T P, PARKER T E, et al. High-accuracy measurement of the black body radiation frequency shift of the ground-state hyperfine transition in Cs-133[J]. Physical Review Letters, 2014, 112(5):050801. DOI: 10.1103/Phys-RevLett.112.050801.

    [7] [7] WANG Y, ZHANG X L, CORCOVILOS T A, et al. Coherent addressing of individual neutral atoms in a 3D optical lattice[J]. Physical Review Letters, 2015, 115(4):043003. DOI: 10.1103/PhysRevLett.115.043003.

    [8] [8] HEROLD C D, VAIDYA V D, LI X, et al. Precision measurement of transition matrix elements via light shift cancellation[J]. Physical Review Letters, 2012, 109(24):243003. DOI: 10.1103/PhysRevLett.109.243003.

    [9] [9] SAFRONOVA M S, ZUHRIANDA Z, SAFRONOVA U I, et al. Extracting transition rates from zero-polarizability spectroscopy[J]. Physical Review A, 2015, 92(4):040501. DOI: 10.1103/PhysRevA.92.040501.

    [10] [10] FALLON A, SACKETT C. Obtaining atomic matrix elements from vector tune-out wavelengths using atom interferometry[J]. Atoms, 2016, 4(2):12. DOI: 10.3390/atoms4020012.

    [11] [11] LEBLANC L J, THYWISSEN J H. Species-specific optical lattices[J]. Physical Review A, 2007, 75(5):053612. DOI: 10.1103/PhysRevA.75.053612.

    [12] [12] MITROY J, TANG L Y. Tune-out wavelengths for metastable helium[J]. Physical Review A, 2013, 88(5):052515. DOI: 10.1103/PhysRevA.88.052515.

    [13] [13] HENSON B M, KHAKIMOV R I, DALL R G, et al. Precision measurement for metastable helium atoms of the 413 nm tune-out wavelength at which the atomic polarizability vanishes[J]. Physical Review Letters, 2015, 115(4):043004. DOI: 10.1103/PhysRevLett.115.043004.

    [14] [14] HOLMGREN W F, TRUBKO R, HROMADA I, et al. Measurement of a wavelength of light for which the energy shift for an atom vanishes[J]. Physical Review Letters, 2012, 109(24):243004. DOI: 10.1103/PhysRevLett.109.243004.

    [15] [15] ZHANG Y H, TANG L Y, ZHANG X Z, et al. Tune-out wavelength around 413 nm for the helium 2 3S1 state including relativistic and finite-nuclear-mass corrections[J]. Physical Review A, 2016, 93(5):052516. DOI: 10.1103/PhysRevA.93.052516.

    [16] [16] LAI Z L, ZHANG S C, GOU Q D, et al. Polarizabilities of Rydberg states of Rb atoms with n up to 140[J]. Physical Review A, 2018, 98(5):052503. DOI: 10.1103/PhysRevA.98.052503.

    [17] [17] ZHANG Y H, WU F F, ZHANG P P, et al. QED and relativistic nuclear recoil corrections to the 413-nm tune-out wavelength[J]. Physical Review A, 2019, 99(4):040502. DOI: 10.1103/PhysRevA.99.040502.

    [18] [18] COPENHAVER E, CASSELLA K, BERGHAUS R, et al. Measurement of a 7Li tune-out wavelength by phase-patterned atom interferometry[J]. Physical Review A, 2019, 100(6):063603. DOI: 10.1103/PhysRevA.100.063603.

    [19] [19] JIANG J, LI X J, WANG X, et al. Tune-out wavelengths of the hyperfine components of the ground level of 133Cs atoms[J]. Physical Review A, 2020, 102(4):042823. DOI: 10.1103/PhysRevA.102.042823.

    [21] [21] RATKATA A, GREGORY P D, INNES A D, et al. Measurement of the tune-out wavelength for 133Cs at 880 nm[J]. Physical Review A, 2021, 104(5):052813. DOI: 10.1103/PhysRevA.104.052813.

    [22] [22] ORCUTT R H, COLE R H. Dielectric constants of imperfect gases. Ⅲ. atomic gases, Hydrogen, and Nitrogen[J]. The Journal of Chemical Physics, 1967, 46(2):697-702. DOI: 10.1063/1.1840728

    [23] [23] MOLOF R W, SCHWARTZ H L, MILLER T M, et al. Measurements of electric dipole polarizabilities of the alkali-metal atoms and the metastable noble-gas atoms[J]. Physical Review A, 1974, 10(4):1131-1140. DOI: 10.1103/PhysRevA.10.1131.

    [24] [24] MILLE T M, BEDERSON B. Measurement of the polarizability of calcium[J]. Physical Review A, 1976, 14(4):1572. DOI: 10.1103/PhysRevA.14.1572.

    [25] [25] SCHWARTZ H L, MILLER T M, BEDERSON B, et al. Measurement of the static electric dipole polarizabilities of barium and strontium[J]. Physical Review A, 1974, 10(6):1924-1926. DOI: 10.1103/PhysRevA.10.1924.

    [26] [26] CRONIN A D, SCHEMIEDMAYER J, PRITCHARD D E. Optics and interferometry with atoms and molecules[J]. Reviews of Modern Physics, 2009, 81(3):1051. DOI: 10.1103/RevModPhy.81.1051.

    [27] [27] MIFFRE A, JACQUET M, BCHNER M, et al. Atom interferometry measurement of the electric polarizability of lithium[J]. The European Physical Journal D, 2006, 38:353-365. DOI: 10.1140/epjd/e2006-00015-5.

    [28] [28] EKSTROM C R, SCHMIEDMAYER J, CHAPMAN M S, et al. Measurement of the electric polarizability of sodium with an atom interferometer[J]. Physical Review A, 1995, 51(5):3883-3888. DOI: 10.1103/PhysRevA.51.3883.

    [29] [29] HOLMGREN W F, REVELLE M C, LONIJ V P A, et al. Absolute and ratio measurements of the polarizability of Na, K, and Rb with an atom interferometer[J]. Physical Review A, 2010, 81(5):053607. DOI: 10.1103/PhysRevA.81.053607.

    [30] [30] GREGOIRE M D, HROMADA I, HOLMGREN W F, et al. Measurements of the ground-state polarizabilities of Cs, Rb, and K using atom interferometry[J]. Physical Review A, 2015, 92(5):052513. DOI: 10.1103/PhysRevA.92.052513.

    [31] [31] AMINI J M, GOULD H. High Precision Measurement of the Static Dipole polarizability of Cesium[J]. Physical Review Letters, 2003, 91(15):153001. DOI: 10.1103/PhysRevLett.91.153001.

    [32] [32] ARORA B, SAFRONOVA M S, CLARK C W. Tune-out wavelengths of alkali-metal atoms and their applications[J]. Physical Review A, 2011, 84(4):043401. DOI: 10.1103/PhysRevA.84.043401.

    [33] [33] LIM I S, SCHWERDTFEGER P, METZ B, et al. All-electron and relativistic pseudopotential studies for the group 1 element polarizabilities from K to element 119[J]. The Journal of Chemical Physics, 2005, 122(10):104103. DOI: 10.10631/1.1856451.

    [34] [34] BORSCHEVSKY A, PERSHINA V, ELIAV E, et al. Ab initio studies of atomic properties and experimental behavior of element 119 and its lighter homologs[J]. The Journal of Chemical Physics, 2013, 138(12):124302. DOI: 10.10631/1.4795433.

    [35] [35] SAFRONOVA M S, ARORA B, CLARK C W. Frequency-dependent polarizabilities of alkali-metal atoms from ultraviolet through infrared spectral regions[J]. Physical Review A, 2006, 73(2):022505. DOI: 10.1103/PhysRevA.73.022505.

    [36] [36] JING M, HU Y, MA J, et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 2020, 16(9):911-915. DOI: 10.1038/s41567-020-0918-5.

    [37] [37] CHEN S, REED D J, MACKELLAR A R, et al. Terahertz electrometry via infrared spectroscopy of atomic vapor[J]. Optica, 2022, 9(5):485-491. DOI: 10.1364/OPTICA.456761.

    [38] [38] ZHOU Y, PENG R, ZHANG J, et al. Theoretical investigation on the mechanism and law of broadband terahertz wave detection using Rydberg quantum state[J]. IEEE Photonics Journal, 2022, 14(3):1-8. DOI: 10.1109/JPHOT.2022.3178190.

    [39] [39] LIU Z H, HE J, LIU Y, et al. Tune-out wavelengths of Rydberg atoms[J]. Acta Physica Sinica, 2024, 73(13):91-98. DOI: 10.7498/aps.73.20240397.

    Tools

    Get Citation

    Copy Citation Text

    LIU Tingting, LIU Jia, LIU Zhihui, ZHANG Yaya, HAN Yashuai. Theoretical Calculation of the Tune-out Wavelength in the Terahertz Band of Cesium Rydberg Atoms[J]. Journal of Quantum Optics, 2025, 31(1): 10501

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 8, 2024

    Accepted: Apr. 17, 2025

    Published Online: Apr. 17, 2025

    The Author Email: HAN Yashuai (595270274@qq.com)

    DOI:10.3788/jqo20253101.0501

    Topics