Laser & Infrared, Volume. 54, Issue 1, 10(2024)
Research progress of 2 μm high energy thulium-doped pulsed fiber laser
[1] [1] Willer U, Saraji M, Khorsandi A, et al. Near and mid-infrared laser monitoring of industrial processes, environment and security applications[J]. Optics and Lasers in Engineering, 2006, 44(7): 699-710.
[2] [2] Barria J B, Mammez D, Cadiou E, et al. Multispecies high-energy emitter for CO2, CH4, and H2O monitoring in the 2 m range[J]. Optics Letters, 2014, 39(23): 6719-6722.
[3] [3] Scholle K, Lamrini S, Koopmann P, et al. 2 m laser sources and their possible applications[M]//Frontiers in guided wave optics and optoelectronics. Intech Open, 2010: 472-500.
[4] [4] Fried N M, Murray K E. High-power thulium fiber laser ablation of urinary tissues at 1.94 m[J]. Journal of Endourology, 2005, 19(1): 25-31.
[5] [5] Fried N M. Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110 watt thulium fiber laser at 1.94 m[J]. Lasers in Surgery and Medicine: the Official Journal of the American Society for Laser Medicine and Surgery, 2005, 37(1): 53-58.
[6] [6] Hardy L A, Wilson C R, Irby P B, et al. Rapid thulium fiber laser lithotripsy at pulse rates up to 500 Hz using a stone basket[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 138-141.
[7] [7] Mingareev I, Weirauch F, Olowinsky A, et al. Welding of polymers using a 2 m thulium fiber laser[J]. Optics & Laser Technology, 2012, 44(7): 2095-2099.
[8] [8] Li Z, Heidt A M, Daniel J M O, et al. Thulium-doped fiber amplifier for optical communications at 2 m[J]. Optics Express, 2013, 21(8): 9289-9297.
[9] [9] Li Z, Heidt A M, Simakov N, et al. Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800-2050 nm window[J]. Optics Express, 2013, 21(22): 26450-26455.
[10] [10] Cheung E, Palese S, Injeyan H, et al. High power conversion to mid-IR using KTP and ZGP OPOs[C]//Advanced Solid State Lasers, 1999.
[12] [12] Li C, Wei X, Kong C, et al. Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser[J]. APL Photonics, 2017, 2(12): 121302.
[13] [13] Ahmad H, Samion M Z, Kamely A A, et al. Mode-locked thulium doped fiber laser with zinc oxide saturable absorber for 2 m operation[J]. Infrared Physics & Technology, 2019, 97: 142-148.
[14] [14] Ghosh A, Roy A S, Chowdhury S D, et al. All-fiber tunable ring laser source near 2 m designed for CO2 sensing[J]. Sensors and Actuators B: Chemical, 2016, 235: 547-553.
[15] [15] Latiff A A, Cheng X S, Rusdi M F M, et al. Molybdenum disulfide saturable absorber for eye-safe mode-locked fiber laser generation[J]. Journal of Nonlinear Optical Physics & Materials, 2018, 27(1): 1850010.
[17] [17] Chang W, Ankiewicz A, Soto-Crespo J M, et al. Dissipative soliton resonances in laser models with parameter management[J]. JOSA B, 2008, 25(12): 1972-1977.
[18] [18] Chang W, Soto-Crespo J M, Ankiewicz A, et al. Dissipative soliton resonances in the anomalous dispersion regime[J]. Physical Review A, 2009, 79(3): 033840.
[19] [19] Grelu P, Chang W, Ankiewicz A, et al. Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators[J]. JOSA B, 2010, 27(11): 2336-2341.
[20] [20] Yanqi G, Jiaolin L, Shumin Z, et al. Cavity-induced peak power clamping effect for gain-guided solitons in passively mode-locked fiber lasers[J]. Infrared and Laser Engineering, 2014, 43(11): 3533-3539.
[21] [21] Zhao J, Ouyang D, Zheng Z, et al. 100 W dissipative soliton resonances from a thulium-doped double-clad all-fiber-format MOPA system[J]. Optics Express, 2016, 24(11): 12072-12081.
[22] [22] Zheng Z, Ouyang D, Ren X, et al. 0.33 mJ, 104.3 W dissipative soliton resonance based on a figure-of-9 double-clad Tm-doped oscillator and an all-fiber MOPA system[J]. Photonics Research, 2019, 7(5): 513-517.
[23] [23] Tang Y, Li F, Xu J. High Peak-power gain-switched Tm3+-doped fiber laser[J]. IEEE Photonics Technology Letters, 2011, 23(13): 893-895.
[24] [24] Tang Y, Xu L, Yang Y, et al. High-power gain-switched Tm3+-doped fiber laser[J]. Optics Express, 2010, 18(22): 22964-22972.
[25] [25] Schellhorn M. High-power diode-pumped Tm: YLF laser[J]. Applied Physics B, 2008, 91: 71-74.
[28] [28] Li L, Zhang B, Yin K, et al. 1 mJ nanosecond all-fiber thulium-doped fiber laser at 2.05 m[J]. Optics Express, 2015, 23(14): 18098-18105.
[29] [29] Lorenz D, Romano C, Panitzek D, et al. Three-stage MOPA 2 m fiber laser for ZGP OPO pumping[C]//Nonlinear Frequency Generation and Conversion: Materials and Devices XXI. SPIE, 2022, 11985: 106-111.
[30] [30] Tang Y, Xu J. Effects of excited-state absorption on self-pulsing in Tm3+-doped fiber lasers[J]. JOSA B, 2010, 27(2): 179-186.
[31] [31] Frith G, Lancaster D G, Jackson S D.85 W Tm3+-doped silica fibre laser[J]. Electronics Letters, 2005, 41(12): 1.
[32] [32] Jackson S D. Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 m Tm3+-doped silica fibre lasers[J]. Optics Communications, 2004, 230(1-3): 197-203.
[36] [36] El-Sherif A F, King T A. High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator[J]. Optics Communications, 2003, 218(4-6): 337-344.
[38] [38] Kivisto S, Hakulinen T, Guina M, et al. Tunable Raman soliton source using mode-locked Tm-Ho fiber laser[J]. IEEE Photonics Technology Letters, 2007, 19(12): 934-936.
[39] [39] Wang Q, Geng J, Jiang Z, et al. Mode-locked Tm-Ho-codoped fiber laser at 2.06 m[J]. IEEE Photonics Technology Letters, 2011, 23(11): 682-684.
[40] [40] Kivist S, Koskinen R, Paajaste J, et al. Passively Q-switched Tm3+, Ho3+-doped silica fiber laser using a highly nonlinear saturable absorber and dynamic gain pulse compression[J]. Optics Express, 2008, 16(26): 22058-22063.
[41] [41] Stutzki F, Jansen F, Jauregui C, et al. 2.4 mJ, 33 W Q-switched Tm-doped fiber laser with near diffraction-limited beam quality[J]. Optics Letters, 2013, 38(2): 97-99.
[42] [42] Tang Y, Li X, Yan Z, et al. 50-W 2-m nanosecond all-fiber-based thulium-doped fiber amplifier[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 537-543.
[43] [43] Abdulfattah A, Sincore A, Bradford J, et al. 700 J, 100 ns, 20 kHz pulses from a 1.5 m Thulium-doped fiber amplifier[C]//Laser Technology for Defense and Security XIV. SPIE, 2018, 10637: 81-86.
[44] [44] He Z, Yu T, Meng J, et al. 2 m band pulsed all-PM thulium-doped fiber laser based on the acousto-optic Q-switching[C]//Seventh Symposium on Novel Photoelectronic Detection Technology and Applications. SPIE, 2021, 11763: 1208-1213.
Get Citation
Copy Citation Text
ZHENG Bo-wen, YANG Chao, LI Yong-liang, LI Xin. Research progress of 2 μm high energy thulium-doped pulsed fiber laser[J]. Laser & Infrared, 2024, 54(1): 10
Category:
Received: May. 31, 2023
Accepted: Apr. 22, 2025
Published Online: Apr. 22, 2025
The Author Email: YANG Chao (yc_super1@163.com)