Chinese Journal of Lasers, Volume. 50, Issue 23, 2308001(2023)
Widely Tunable and High Pulse Energy Short‑Wave Infrared Optical Parametric Oscillator
[1] Barria J B, Mammez D, Cadiou E et al. Multispecies high-energy emitter for CO₂, CH₄, and H₂O monitoring in the 2 μm range[J]. Optics Letters, 39, 6719-6722(2014).
[2] Yin X K, Dong L, Wu H P et al. Design and optimization of photoacoustic CO gas sensor for fault diagnosis of SF6 gas insulated equipment[J]. Acta Physica Sinica, 70, 170701(2021).
[3] Raza M, Ma L H, Yao S C et al. High-temperature dual-species (CO/NH3) detection using calibration-free scanned-wavelength-modulation spectroscopy at 2.3 μm[J]. Fuel, 305, 121591(2021).
[4] Jiang S L, Jin W, Chen F F et al. Carbon dioxide detection with high sensitivity based on photo-thermal spectroscopy in hollow-core optical fiber[J]. Acta Optica Sinica, 41, 1306004(2021).
[5] Tian Y L, Wang Y, Wang X et al. Advances in detection of microorganisms using near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 42, 9-14(2022).
[6] Degirmenci T, Gunlusoy B, Kozacioglu Z et al. Comparison of Ho: YAG laser and pneumatic lithotripsy in the treatment of impacted ureteral stones: an analysis of risk factors[J]. The Kaohsiung Journal of Medical Sciences, 30, 153-158(2014).
[7] Zhu G W, Zhu X S, Balakrishnan K et al. Fe2+: ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm[J]. Optical Materials Express, 3, 1365-1377(2013).
[8] Guo L L, Wang M R, Zhang Y F et al. Mid-infrared dual-wavelength passively Q-switched Er: SrF2 laser by CsPbCl3 quantum dots absorber[J]. Crystals, 12, 1265(2022).
[9] Min H H, Liu G H, Zhai X J et al. Research progress of holmium-doped solid-state lasers[J]. Laser & Optoelectronics Progress, 59, 2100002(2022).
[10] Fan H Z, Liang J H, Zheng S K et al. 2.8 μm mid-infrared synchronously pumped mode-locked fiber laser[J]. Chinese Journal of Lasers, 49, 0101020(2022).
[11] Lin J T, Montgomery J L. Generation of tunable mid-IR (1.8-2.4 μm) laser from optical parametric oscillation in KTP[J]. Optics Communications, 75, 315-320(1990).
[12] Zhu Y C, Lan G, Li T et al. 2 μm KTiOAsO4 optical parametric oscillator[J]. Acta Optica Sinica, 27, 2059-2063(2007).
[13] Wang S T, Tulake Y, Sulaiman D et al. Tunable 2.3–3 μm optical vortex parametric laser[J]. Laser Physics, 32, 045001(2022).
[14] Edwards T J, Turnbull G A, Dunn M et al. Continuous-wave, singly-resonant, optical parametric oscillator based on periodically poled KTiOPO4[J]. Optics Express, 6, 58-63(2000).
[15] Zumsteg F C, Bierlein J D, Gier T E. KxRb1–xTiOPO4: a new nonlinear optical material[J]. Journal of Applied Physics, 47, 4980-4985(1976).
[16] Bierlein J D, Vanherzeele H. Potassium titanyl phosphate: properties and new applications[J]. Journal of the Optical Society of America B, 6, 622-633(1989).
[17] Miyamoto K, Ito H. Wavelength-agile mid-infrared (5-10 μm) generation using a galvano-controlled KTiOPO4 optical parametric oscillator[J]. Optics Letters, 32, 274-276(2007).
[18] Yan D X, Xu D G, Wang Y Y et al. High-repetition-rate, tunable and coherent mid-infrared source based on difference frequency generation from a dual-wavelength 2 µm laser and GaSe crystal[J]. Laser Physics, 28, 126205(2018).
[19] Peng Y F, Xie G, Wang W M et al. Intracavity optical parametric oscillator high-repetition-rate 2 μm laser with 46 W output power[J]. Chinese Journal of Lasers, 36, 33-36(2009).
[20] Cui Q J, Shu X W, Le X Y et al. 70-W average-power doubly resonant optical parametric oscillator at 2 μm with single KTP[J]. Applied Physics B, 117, 639-643(2014).
[21] Xie X B, Li S G, Zhu X L et al. Characteristics of single resonant nanosecond pulse optical parametric oscillator with output wavelength of 2.05 μm[J]. Chinese Journal of Lasers, 43, 1208002(2016).
[22] Peng Y F, Wei X B, Wang W M et al. Intracavity optical parametric oscillator 2.7 μm laser with near diffraction limit beam quality[J]. Chinese Journal of Lasers, 37, 2376-2379(2010).
[23] Bai F, Wang Q P, Liu Z J et al. 1.8 μm optical parametric oscillator based on KTiOPO4[J]. Laser Physics, 22, 1797-1802(2012).
[24] Bian J T. Experimental research on 2.7 μm wave band laser with high peak power generated by KTP optical parametric oscillator[J]. Electro-Optic Technology Application, 32, 22-25(2017).
[25] Li H N, Zhang D C, Zhu J F et al. Nanosecond mid-infrared tunable parametric laser[J]. Acta Optica Sinica, 39, 1114002(2019).
[26] Kato K, Takaoka E. Sellmeier and thermo-optic dispersion formulas for KTP[J]. Applied Optics, 41, 5040-5044(2002).
[27] Bjorkholm J, Ashkin A, Smith R. Improvement of optical parametric oscillators by nonresonant pump reflection[J]. IEEE Journal of Quantum Electronics, 6, 797-799(1970).
[28] Yan D X, Wang Y Y, Xu D G et al. High power, widely tunable dual-wavelength 2 μm laser based on intracavity KTP optical parametric oscillator[J]. Journal of Physics D: Applied Physics, 50, 035104(2017).
[29] Sutherland R L[M]. Handbook of nonlinear optics, 144-145(2003).
[30] Ahmed F. Laser damage threshold of KTiOPO4[J]. Applied Optics, 28, 119-122(1989).
Get Citation
Copy Citation Text
Pengxiang Liu, Wei Li, Feng Qi, Chuncao Niu, Weifan Li, Qiaoqiao Fu, Liyuan Guo, Zhongyang Li. Widely Tunable and High Pulse Energy Short‑Wave Infrared Optical Parametric Oscillator[J]. Chinese Journal of Lasers, 2023, 50(23): 2308001
Category: nonlinear optics
Received: Mar. 9, 2023
Accepted: Apr. 28, 2023
Published Online: Dec. 7, 2023
The Author Email: Qi Feng (qifeng@sia.cn)