OPTICS & OPTOELECTRONIC TECHNOLOGY, Volume. 20, Issue 4, 96(2022)

Recent Advances in Optical Spiking Neural Networks

MA Ting1, LI Wan-jie2, FENG Jia-nan1, LIN Jie1, and JING Peng1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(53)

    [1] [1] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778.

    [2] [2] Zhao Z Q, Zheng P, Xu S T, et al. Object detection with deep learning: A review[C]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3212-3232.

    [3] [3] Levinson J, Askeland J, Becker J, et al. Towards fully autonomous driving: Systems and algorithms[C]. IEEE Intelligent Vehicles Symposium (IV), 2011: 12095297.

    [4] [4] Finogeev A, Finogeev A, Fionova L, et al. Intelligent monitoring system for smart road environment[J]. Journal of Industrial Information Integration, 2019, 15: 15-20.

    [5] [5] Amato F, López A, Méndez E M P, et al. Artificial neural networks in medical diagnosis[J]. Journal of Applied Biomedicine, 2013, 11(2): 47-58.

    [6] [6] Chen C, Zhang J, Xie Y, et al. A performance evaluation of machine learning-based streaming spam tweets detection[C]. IEEE Transactions on Computational Social Systems, 2015, 2(3): 65-76.

    [7] [7] Vaidyanathan S, Pham V T, Volos C K, et al. A memristor-based hyperchaotic system with hidden attractors: dynamics, synchronization and circuital emulating[J]. Journal of Engineering Science and Technology Review, 2015, 8(2): 205-214.

    [8] [8] Chakraborty I, Saha G, Sengupta A, et al. Toward fast neural computing using all-photonic phase change spiking neurons[J]. Scientific Reports, 2018, 8: 12980.

    [9] [9] Kravtsov K S, Fok M P, Prucnal P R, et al. Ultrafast all-optical implementation of a leaky integrate-and-fire neuron[J]. Optics Express, 2011, 19(3): 2133-2147.

    [10] [10] Jenkins B K, Tanguay A R. Photonic implementations of neural networks[C]. Neural Networks for Signal Processing, 1992: 287-372.

    [11] [11] Miller D A B. Attojoule optoelectronics for low-energy information processing and communications[J]. Journal of Lightwave Technology, 2017, 35(3): 46-96.

    [14] [14] Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 65(6): 386-408.

    [15] [15] Vanrullen R, Guyonneau R, Thorpe S J. Spike times make sense[J]. Trends in Neurosciences, 2005, 28(1): 1-4.

    [16] [16] Rieke F, Warland D, de Ruyter van Steveninck R, et al. Spikes: Exploring the neural code[M]. Cambridge: MIT Press, 1999.

    [17] [17] Haykin S S. Neural networks and learning machines[M]. Upper Saddle River: Pearson Education, 2009: 115-128.

    [18] [18] Quiroga R Q, Panzeri S. Principles of neural coding[M]. Boca Raton, FL: CRC Press, 2013: 5-30.

    [19] [19] Dayan P, Abbott L F. Theoretical neuroscience: Computational and mathematical modeling of neural systems[M]. New York: MIT Press, 2001: 101-108.

    [21] [21] Maass W. Networks of spiking neurons: The third generation of neural network models[J]. Neural Networks, 1997, 10(9): 1659-1671.

    [22] [22] Roy K, Jaiswal A, Panda P. Towards spike-based machine intelligence with neuromorphic computing[J]. Nature, 2019, 575: 607-617.

    [23] [23] Rosenbluth D, Kravtsov K, Fok M P, et al. A high performance photonic pulse processing device[J]. Optics Express, 2009, 17(25): 22767-22772.

    [24] [24] Kravtsov K, Fok M P, Rosenbluth D. Ultrafast all-optical implementation of a leaky integrate-and-fire neuron[J]. Optics Express, 2011, 19(3): 2133-2147.

    [25] [25] Fok M P, Tian Y, Rosenbluth D, et al. A synchronous spiking photonic neuron for lightwave neuromorphic signal processing[J]. Optics Letters, 2012, 37(16): 3309-3311.

    [26] [26] Tian Y, Fok M P, Rosenbluth D, et al. Asynchronous spiking neuron based on four-wave mixing and cross absorption modulation[C]. Optical Fiber Communication Conference, 2012: OTh3H.1.

    [27] [27] Nahmias M A, Tait A N, Shastri B J, et al. An evanescent hybrid silicon laser neuron[C]. IEEE Photonics Conference, 2013: 93-94.

    [28] [28] Nahmias M A, Tait A N, Shastri B J, et al. Excitable laser processing network node in hybrid silicon: analysis and simulation[J]. Optics Express, 2015, 23(20): 26800-26813.

    [29] [29] Peng H T, Nahmias M A, de Lima T F, et al. Neuromorphic photonic integrated circuits[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(6): 1-15.

    [30] [30] Peng H T, Angelatos G, de Lima T F, et al. Temporal information processing with an integrated laser neuron[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 26(1): 1-9.

    [31] [31] Shastri B J, Nahmias M A, Tait A N, et al. Simulations of a graphene excitable laser for spike processing[J]. Optical and Quantum Electronics, 2014, 46(10): 1353-1358.

    [32] [32] Shastri B J, Nahmias M A, Tait A N, et al. Spike processing with a graphene excitable laser[J]. Scientific Reports, 2016, 6: 19126.

    [33] [33] Ma P Y, Shastri B J, de Lima T F, et al. Simultaneous excitatory and inhibitory dynamics in an excitable laser[J]. Optics Letters, 2018, 43(15): 3802-3805.

    [34] [34] Panajotov K, Sciamanna M, Gatare I, et al. Nonlinear dynamics of vertical-cavity surface-emitting lasers[J]. Advances in Optical Technologies, 2011: 1-16

    [35] [35] Nahmias M A, Shastri B J, Tian Y, et al. A leaky integrate-and-fire laser neuron for ultrafast cognitive computing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(5): 1800212.

    [36] [36] Xiang S Y, Zhang Y H, Gong J K, et al. STDP-based unsupervised spike pattern learning in a photonic spiking neural network with VCSELs and VCSOAs[C]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1700109.

    [37] [37] Xiang S Y, Ren Z X, Song Z W, et al. Computing primitive of fully VCSEL-based all-optical spiking neural network for supervised learning and pattern classification[C]. IEEE Transactions on neural Networks and Learning Systems, 2021, 32(6): 2494-2505.

    [38] [38] Gao S, Xiang S Y, Song Z W, et al. All-optical Sudoku solver with photonic spiking neural network[J]. Optics Communications, 2021, 495: 127068.

    [39] [39] Coomans W, Gelens L, Beri S, et al. Solitary and coupled semiconductor ring lasers as optical spiking neurons[J]. Physical Review E: Statistical, Nonlinear, Biological, and Soft Matter Physics, 2011, 84(3): 036209.

    [40] [40] Romeira B, Javaloyes J, Ironside C N, et al. Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors[J]. Optics Express, 2013, 21(18): 20931-20940.

    [41] [41] Alexander K, Vaerenbergh T, Fiers M, et al. Excitability in optically injected microdisk lasers with phase controlled excitatory and inhibitory response[J]. Optics Express, 2013, 21(22): 26182-26191.

    [42] [42] Selmi F, Braive R, Beaudoin G, et al. Relative refractory period in an excitable semiconductor laser[J]. Physical Review Letters, 2014, 112(18): 183902.

    [43] [43] Pammi V A, Alfaro-Bittner K, Clearc M G, et al. Photonic computing with single and coupled spiking micropillar lasers[C]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 26(1): 1-7.

    [44] [44] Mesaritakis C, Kapsalis A, Bogris A, et al. Artificial neuron based on integrated semiconductor quantum dot mode-locked lasers[J]. Scientific Reports, 2016, 6(1): 1-10.

    [45] [45] Sarantoglou G, Skontranis M, Mesaritakis C. All optical integrate and fire neuromorphic node based on single section quantum dot laser[C]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(5): 1-10.

    [46] [46] Chakraborty I, Saha G, Sengupta A, et al. Toward fast neural computing using all-photonic phase change spiking neurons[J]. Scientific Reports, 2018, 8(1): 1-9.

    [47] [47] Feldmann J, Youngblood N, Wright C D, et al. All-optical spiking neurosynaptic networks with self-learning capabilities[J]. Nature, 2019, 569: 208-214.

    [48] [48] Jha A, Huang C, Peng H T. Photonic spiking neural networks and CMOS-compatible graphene-on-silicon spiking neurons[J]. Physics Optics, 2021, arXiv: 2109. 13797.

    [49] [49] Lin X, Wang X, Hao Z, et al. Supervised learning in multilayer spiking neural networks with inner products of spike trains[J]. Neurocomputing, 2017, 237: 59-70.

    [50] [50] Bohte S M, Kok J N, La P H. Error-backpropagation in temporally encoded networks of spiking neurons[J]. Neurocomputing, 2002, 48(1-4): 17-37.

    [51] [51] Gütig R, Sompolinsky H. The tempotron: A neuron that learns spike timing-based decisions[J]. Nature Neuroscience, 2006, 9(3): 420-428.

    [52] [52] Florian R V. The chronotron: A neuron that learns to fire temporally precise spike patterns[J]. Plos One, 2012, 7(8): e40233.

    [53] [53] Ponulak F, Kasiński A. Supervised learning in spiking neural networks with ReSuMe: Sequence learning classification and spike shifting[J]. Neural Computation, 2010, 22(2): 467-510.

    [54] [54] Wade J J, McDaid L J, Santos J A, et al. SWAT: A spiking neural network training algorithm for classification problems[C]. IEEE Transactions on Neural Networks, 2010, 21(11): 1817-1830.

    [55] [55] Mohemmed A, Schliebs S, Matsuda S, et al. SPAN: Spike pattern association neuron for learning spatio-temporal spike patterns[J]. International Journal of Neural Systems, 2012, 22(4): 1250012.

    [56] [56] Yu Q, Tang H, Tan K C, et al. Precise-spike-driven synaptic plasticity: Learning hetero-association of spatiotemporal spike patterns[J]. Plos One, 2013, 8(11): e78318.

    Tools

    Get Citation

    Copy Citation Text

    MA Ting, LI Wan-jie, FENG Jia-nan, LIN Jie, JING Peng. Recent Advances in Optical Spiking Neural Networks[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2022, 20(4): 96

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 11, 2021

    Accepted: --

    Published Online: Oct. 29, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics