Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 5, 666(2023)
Rail surface crack detection algorithm based on improved YOLOv5s
[9] ZHANG J B, WANG R W, LIU F L et al. Crack detection on the friction pads of high-speed rail[J]. Journal of Optoelectronics·Laser, 32, 962-969(2021).
[15] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J/OL]. arXiv, 2004-10934(2020).
[19] TARG S, ALMEIDA D, LYMAN K. Resnet in resnet: generalizing residual architectures[J/OL]. arXiv, 1603-08029(2016).
[28] LV H F, LU H C. Research on traffic sign recognition technology based on YOLOv5 algorithm[J]. Journal of Electronic Measurement and Instrumentation, 35, 137-144(2021).
Get Citation
Copy Citation Text
Miao-sen ZHOU, Quan-wu TANG, Tian-tian SHI, Tong-lan LUO, Ze-xin ZHANG, Yong-xia XUE. Rail surface crack detection algorithm based on improved YOLOv5s[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(5): 666
Category: Research Articles
Received: Aug. 13, 2022
Accepted: --
Published Online: Jul. 4, 2023
The Author Email: Quan-wu TANG (tangqw@nxu.edu.cn)