Journal of the Chinese Ceramic Society, Volume. 53, Issue 1, 212(2025)

Effect of Impurity Ions on Micro-/Nano-Structure of Calcium Silicate (Aluminate) Hydrate

XU Linglin1, SUN Zixuan1, CHEN Yuting1, ZHU Zheyu2, and WU Kai1
Author Affiliations
  • 1Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
  • 2School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, China
  • show less
    References(104)

    [1] [1] ABDOLHOSSEINI QOMI M J, KRAKOWIAK K J, BAUCHY M, et al. Combinatorial molecular optimization of cement hydrates[J]. Nat Commun, 2014, 5: 4960.

    [2] [2] HU Z L, HILAIRE A, STON J, et al. Intrinsic viscoelasticity of C-S-H assessed from basic creep of cement pastes[J]. Cem Concr Res, 2019, 121: 11-20.

    [4] [4] L’HPITAL E, LOTHENBACH B, LE SAOUT G, et al. Incorporation of aluminium in calcium-silicate-hydrates[J]. Cem Concr Res, 2015, 75: 91-103.

    [5] [5] IRBE L, BEDDOE R E, HEINZ D. The role of aluminium in C-A-S-H during sulfate attack on concrete[J]. Cem Concr Res, 2019, 116: 71-80.

    [6] [6] YAN Y, MA B, MIRON G D, et al. Al uptake in calcium silicate hydrate and the effect of alkali hydroxide[J]. Cem Concr Res, 2022, 162: 106957.

    [7] [7] BALDERMANN A, PREISSEGGER V, DIETZEL M. Solubility of C-A-S-H phases with high degree of heavy metal ion substitution[J]. Constr Build Mater, 2022, 327: 126926.

    [8] [8] ZHU X P, VANDAMME M, BROCHARD L, et al. Nature of aluminates in C-A-S-H: A cryogenic stability insight, an extension of DNA-code rule, and a general structural-chemical formula[J]. Cem Concr Res, 2023, 167: 107131.

    [9] [9] LI D B, QI Q D, LIU Q L, et al. Uniaxial tensile study of calcium aluminosilicate hydrate (C-A-S-H): Structure, dynamics and mechanical properties[J]. Mater Today Commun, 2024, 38: 107854.

    [10] [10] WANG Z P, CHEN Y T, XU L L, et al. Insight into the local C-S-H structure and its evolution mechanism controlled by curing regime and Ca/Si ratio[J]. Constr Build Mater, 2022, 333: 127388.

    [11] [11] ZHENG Q, JIANG J Y, LI X L, et al. In situ TEM observation of calcium silicate hydrate nanostructure at high temperatures[J]. Cem Concr Res, 2021, 149: 106579.

    [12] [12] GAJEWICZ-JAROMIN A M, MCDONALD P J, MULLER A C A, et al. Influence of curing temperature on cement paste microstructure measured by 1H NMR relaxometry[J]. Cem Concr Res, 2019, 122: 147-156.

    [13] [13] LI J Q, ZHANG W X. Preferred orientation of calcium silicate hydrate and its implication to concrete creep[J]. Compos Part B Eng, 2022, 247: 110297.

    [14] [14] SHI Z G, LOTHENBACH B. The combined effect of potassium, sodium and calcium on the formation of alkali-silica reaction products[J]. Cem Concr Res, 2020, 127: 105914.

    [15] [15] CHEN W, BROUWERS H J H. Alkali binding in hydrated Portland cement paste[J]. Cem Concr Res, 2010, 40(5): 716-722.

    [16] [16] BACH T T H, CHABAS E, POCHARD I, et al. Retention of alkali ions by hydrated low-pH cements: Mechanism and Na+/K+ selectivity[J]. Cem Concr Res, 2013, 51: 14-21.

    [17] [17] KIM G, IM S, JEE H, et al. Effect of magnesium silicate hydrate (M-S-H) formation on the local atomic arrangements and mechanical properties of calcium silicate hydrate (C-S-H): In situ X-ray scattering study[J]. Cem Concr Res, 2022, 159: 106869.

    [18] [18] LOTHENBACH B, NIED D, L’HPITAL E, et al. Magnesium and calcium silicate hydrates[J]. Cem Concr Res, 2015, 77: 60-68.

    [20] [20] LIU X, FENG P, YU X H, et al. The physiochemical alterations of calcium silicate hydrate (C-S-H) under magnesium attack[J]. Cem Concr Res, 2022, 160: 106901.

    [21] [21] SHEN X Y, FENG P, ZHANG Q, et al. Toward the formation mechanism of synthetic calcium silicate hydrate (C-S-H)-pH and kinetic considerations[J]. Cem Concr Res, 2023, 172: 107248.

    [22] [22] VIALLIS H, FAUCON P, PETIT J C, et al. Interaction between salts (NaCl, CsCl) and calcium silicate hydrates (C-S-H)[J]. J Phys Chem B, 1999, 103(25): 5212-5219.

    [23] [23] LIU X, FENG P, LI W, et al. Effects of pH on the nano/micro structure of calcium silicate hydrate (C-S-H) under sulfate attack[J]. Cem Concr Res, 2021, 140: 106306.

    [24] [24] KURUMISAWA K, NAWA T, OWADA H, et al. Deteriorated hardened cement paste structure analyzed by XPS and 29Si NMR techniques[J]. Cem Concr Res, 2013, 52: 190-195.

    [25] [25] MARUYAMA I, IGARASHI G, MATSUI K, et al. Hinderance of C-S-H sheet piling during first drying using a shrinkage reducing agent: A SAXS study[J]. Cem Concr Res, 2021, 144: 106429.

    [26] [26] ALLEN A J, THOMAS J J. Analysis of C-S-H gel and cement paste by small-angle neutron scattering[J]. Cem Concr Res, 2007, 37(3): 319-324.

    [27] [27] DONG P, ALLAHVERDI A, ANDREI C M, et al. Liquid cell transmission electron microscopy reveals C-S-H growth mechanism during Portland cement hydration[J]. Materialia, 2022, 22: 101387.

    [28] [28] SHIRANI S, CUESTA A, MORALES-CANTERO A, et al. 4D nanoimaging of early age cement hydration[J]. Nat Commun, 2023, 14(1): 2652.

    [29] [29] HAAS J, NONAT A. From C-S-H to C-A-S-H: Experimental study and thermodynamic modelling[J]. Cem Concr Res, 2015, 68: 124-138.

    [30] [30] MORALES-MELGARES A, CASAR Z, MOUTZOURI P, et al. Atomic-level structure of zinc-modified cementitious calcium silicate hydrate[J]. J Am Chem Soc, 2022, 144(50): 22915-22924.

    [31] [31] ZHOU Y, ZHENG H J, LI W H, et al. A deep learning potential applied in tobermorite phases and extended to calcium silicate hydrates[J]. Cem Concr Res, 2022, 152: 106685.

    [32] [32] TAYLOR H F W. Nanostructure of C-S-H: Current status[J]. Adv Cem Based Mater, 1993, 1(1): 38-46.

    [33] [33] XU Z, VIEHLAND D. Observation of a mesostructure in calcium silicate hydrate gels of Portland cement[J]. Phys Rev Lett, 1996, 77(5): 952-955.

    [34] [34] XU Z K, VIEHLAND D. Reply to “comment on ‘mesostructure of calcium silicate hydrate (C-S-H) gels in Portland cement paste: Short-range ordering, nanocrystallinity, and local compositional order’”[J]. J Am Ceram Soc, 1997, 80(11): 2961-2962.

    [35] [35] TAYLOR H F W. Cement chemistry[M]. 2nd ed. London: Thomas Telford, 1997.

    [37] [37] RICHARDSON I G. The calcium silicate hydrates[J]. Cem Concr Res, 2008, 38(2): 137-158.

    [38] [38] KIM J J, FOLEY E M, REDA TAHA M M. Nano-mechanical characterization of synthetic calcium-silicate-hydrate (C-S-H) with varying CaO/SiO2 mixture ratios[J]. Cem Concr Compos, 2013, 36: 65-70.

    [39] [39] MERLINO S, BONACCORSI E, ARMBRUSTER T. The real structures of clinotobermorite and tobermorite 9 : OD character, polytypes, and structural relationships[J]. Ejm, 2000, 12(2): 411-429.

    [40] [40] MERLINO S, BONACCORSI E, ARMBRUSTER T. The real structure of tobermorite 11A: Normal and anomalous forms, OD character and polytypic modifications[J]. Ejm, 2001, 13(3): 577-590.

    [41] [41] BONACCORSI E, MERLINO S, KAMPF A R. The crystal structure of tobermorite 14 (plombierite), a C-S-H phase[J]. J Am Ceram Soc, 2005, 88(3): 505-512.

    [42] [42] LOTHENBACH B, NONAT A. Calcium silicate hydrates: Solid and liquid phase composition[J]. Cem Concr Res, 2015, 78: 57-70.

    [43] [43] LI J Q, ZHANG W X, GARBEV K, et al. Influences of cross-linking and Al incorporation on the intrinsic mechanical properties of tobermorite[J]. Cem Concr Res, 2020, 136: 106170.

    [44] [44] SCHNEIDER J, CINCOTTO M A, PANEPUCCI H. 29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes[J]. Cem Concr Res, 2001, 31(7): 993-1001.

    [45] [45] YAN Y R, YANG S Y, MIRON G D, et al. Effect of alkali hydroxide on calcium silicate hydrate (C-S-H)[J]. Cem Concr Res, 2022, 151: 106636.

    [49] [49] ZHU Z Y, WANG Z P, XU L L, et al. Synthesis and characterization of an intermediate for C-S-H structure tailoring[J]. Cem Concr Res, 2022, 160: 106923.

    [50] [50] DHARMAWARDHANA C C, MISRA A, CHING W Y. Quantum mechanical metric for internal cohesion in cement crystals[J]. Sci Rep, 2014, 4: 7332.

    [51] [51] SHAHSAVARI R, BUEHLER M J, PELLENQ R J M, et al. First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: Case study of tobermorite and jennite[J]. J Am Ceram Soc, 2009, 92(10): 2323-2330.

    [52] [52] YOUSSEF M, PELLENQ R J M, YILDIZ B. Glassy nature of water in an ultraconfining disordered material: The case of calcium- silicate-hydrate[J]. J Am Chem Soc, 2011, 133(8): 2499-2510.

    [53] [53] ZHANG N, SHAHSAVARI R. Balancing strength and toughness of calcium-silicate-hydrate via random nanovoids and particle inclusions: Atomistic modeling and statistical analysis[J]. J Mech Phys Solids, 2016, 96: 204-222.

    [54] [54] CHURAKOV S V, LABBEZ C, PEGADO L, et al. Intrinsic acidity of surface sites in calcium silicate hydrates and its implication to their electrokinetic properties[J]. J Phys Chem C, 2014, 118(22): 11752-11762.

    [55] [55] NGUYEN M T, WANG Z M, ROD K A, et al. Atomic origins of the self-healing function in cement-polymer composites[J]. ACS Appl Mater Interfaces, 2018, 10(3): 3011-3019.

    [56] [56] KALINICHEV A G, WANG J W, KIRKPATRICK R J. Molecular dynamics modeling of the structure, dynamics and energetics of mineral-water interfaces: Application to cement materials[J]. Cem Concr Res, 2007, 37(3): 337-347.

    [57] [57] WANG T F, CAO J, GUO T, et al. The role of deep learning in reducing computational cost when simulating chloride ion attack on hydrated calcium silicate with molecular dynamics[J]. Constr Build Mater, 2024, 417: 135257.

    [58] [58] KALOUSEK G L. Crystal chemistry of hydrous calcium silicates: I, substitution of aluminum in lattice of tobermorite[J]. J Am Ceram Soc, 1957, 40(3): 74-80.

    [59] [59] L’HPITAL E, LOTHENBACH B, SCRIVENER K, et al. Alkali uptake in calcium alumina silicate hydrate (C-A-S-H)[J]. Cem Concr Res, 2016, 85: 122-136.

    [60] [60] KOMARNENI S, ROY R, ROY D M, et al. 27Al and 29Si magic angle spinning nuclear magnetic resonance spectroscopy of Al-substituted tobermorites[J]. J Mater Sci, 1985, 20(11): 4209-4214.

    [61] [61] PARDAL X, BRUNET F, CHARPENTIER T, et al. 27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate[J]. Inorg Chem, 2012, 51(3): 1827-1836.

    [62] [62] SUN G K, YOUNG J F, KIRKPATRICK R J. The role of Al in C-S-H: NMR, XRD, and compositional results for precipitated samples[J]. Cem Concr Res, 2006, 36(1): 18-29.

    [63] [63] LOTHENBACH B, JANSEN D, YAN Y, et al. Solubility and characterization of synthesized 11 Al-tobermorite[J]. Cem Concr Res, 2022, 159: 106871.

    [64] [64] MAEDA H, ABE K, ISHIDA E H. Hydrothermal synthesis of aluminum substituted tobermorite by using various crystal phases of alumina[J]. J Ceram Soc Japan, 2011, 119(1389): 375-377.

    [65] [65] GARCA LODEIRO I, FERNNDEZ-JIMENEZ A, PALOMO A, et al. Effect on fresh C-S-H gels of the simultaneous addition of alkali and aluminium[J]. Cem Concr Res, 2010, 40(1): 27-32.

    [66] [66] FAUCON P, DELAGRAVE A, RICHET C, et al. Aluminum incorporation in calcium silicate hydrates (C−S−H) depending on their Ca/Si ratio[J]. J Phys Chem B, 1999, 103(37): 7796-7802.

    [67] [67] RENAUDIN G, RUSSIAS J, LEROUX F, et al. Structural characterization of C-S-H and C-A-S-H samples—Part II: Local environment investigated by spectroscopic analyses[J]. J Solid State Chem, 2009, 182(12): 3320-3329.

    [68] [68] MUDRAKOVSKII I L, MASTIKHIN V M, SHMACHKOVA V P, et al. High-resolution solid-state 29Si and 31P NMR of silicon-phosphorous compounds containing six-coordinated silicon[J]. Chem Phys Lett, 1985, 120(4-5): 424-426.

    [69] [69] LI J Q, GENG G Q, MYERS R, et al. The chemistry and structure of calcium (alumino) silicate hydrate: A study by XANES, ptychographic imaging, and wide- and small-angle scattering[J]. Cem Concr Res, 2019, 115: 367-378.

    [70] [70] WANG J W, HU Z L, CHEN Y, et al. Effect of Ca/Si and Al/Si on micromechanical properties of C(-A)-S-H[J]. Cem Concr Res, 2022, 157: 106811.

    [71] [71] HU Z L, WYRZYKOWSKI M, GRIFFA M, et al. Young’s modulus and creep of calcium-silicate-hydrate compacts measured by microindentation[J]. Cem Concr Res, 2020, 134: 106104.

    [72] [72] MEJDI M, WILSON W, SAILLIO M, et al. Quantifying glass powder reaction in blended-cement pastes with the Rietveld-PONKCS method[J]. Cem Concr Res, 2020, 130: 105999.

    [73] [73] WILSON W, RIVERA-TORRES J M, SORELLI L, et al. The micromechanical signature of high-volume natural pozzolan concrete by combined statistical nanoindentation and SEM-EDS analyses[J]. Cem Concr Res, 2017, 91: 1-12.

    [74] [74] KRAKOWIAK K J, WILSON W, JAMES S, et al. Inference of the phase-to-mechanical property link via coupled X-ray spectrometry and indentation analysis: Application to cement-based materials[J]. Cem Concr Res, 2015, 67: 271-285.

    [75] [75] WILSON W, SORELLI L, TAGNIT-HAMOU A. Unveiling micro-chemo-mechanical properties of C-(A)-S-H and other phases in blended-cement pastes[J]. Cem Concr Res, 2018, 107: 317-336.

    [76] [76] GENG G Q, MYERS R J, QOMI M J A, et al. Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate[J]. Sci Rep, 2017, 7(1): 10986.

    [77] [77] RENAUDIN G, RUSSIAS J, LEROUX F, et al. Structural characterization of C-S-H and C-A-S-H samples—Part I: Long-range order investigated by Rietveld analyses[J]. J Solid State Chem, 2009, 182(12): 3312-3319.

    [78] [78] L’HPITAL E, LOTHENBACH B, KULIK D A, et al. Influence of calcium to silica ratio on aluminium uptake in calcium silicate hydrate[J]. Cem Concr Res, 2016, 85: 111-121.

    [79] [79] CHEN J J, THOMAS J J, TAYLOR H F W, et al. Solubility and structure of calcium silicate hydrate[J]. Cem Concr Res, 2004, 34(9): 1499-1519.

    [80] [80] CONG X D, KIRKPATRICK R J. Effects of the temperature and relative humidity on the structure of C-S-H gel[J]. Cem Concr Res, 1995, 25(6): 1237-1245.

    [81] [81] ALIZADEH A. Nanostructure and engineering properties of basic and modified calcium-silicate-hydrate systems[D]. Ottawa: University of Ottawa, 2009.

    [82] [82] MINET J, ABRAMSON S, BRESSON B, et al. Organic calcium silicate hydrate hybrids: A new approach to cement based nanocomposites[J]. J Mater Chem, 2006, 16(14): 1379-1383.

    [83] [83] SUGIYAMA T, RITTHICHAUY W, TSUJI Y. Experimental investigation and numerical modeling of chloride penetration and calcium dissolution in saturated concrete[J]. Cem Concr Res, 2008, 38(1): 49-67.

    [84] [84] BERNARD E, DAUZRES A, LOTHENBACH B. Magnesium and calcium silicate hydrates, Part II: Mg-exchange at the interface “low-pH” cement and magnesium environment studied in a C-S-H and M-S-H model system[J]. Appl Geochem, 2018, 89: 210-218.

    [85] [85] KRATTIGER N, LOTHENBACH B, CHURAKOV S V. Sorption and electrokinetic properties of ASR product and C-S-H: A comparative modelling study[J]. Cem Concr Res, 2021, 146: 106491.

    [86] [86] JALLAD K N, SANTHANAM M, COHEN M D. Stability and reactivity of thaumasite at different pH levels[J]. Cem Concr Res, 2003, 33(3): 433-437.

    [87] [87] LIU X, FENG P, CHEN J, et al. A critical review on the interaction between calcium silicate hydrate (C-S-H) and different ions[J]. Constr Build Mater, 2024, 413: 134931.

    [88] [88] HIRAO H, YAMADA K, TAKAHASHI H, et al. Chloride binding of cement estimated by binding isotherms of hydrates[J]. J Adv Concr Technol, 2005, 3(1): 77-84.

    [89] [89] JUENGER M C G, MONTEIRO P J M, GARTNER E M, et al. A soft X-ray microscope investigation into the effects of calcium chloride on tricalcium silicate hydration[J]. Cem Concr Res, 2005, 35(1): 19-25.

    [90] [90] JIN S C, LIU K, ZHANG G Z, et al. Effect of corrosive ions (Cl−, SO42−, and Mg2+) on the nanostructure and chloride binding property of C-A-S-H gel[J]. J Wuhan Univ Technol Mater Sci Ed, 2020, 35(6): 1061-1072.

    [92] [92] SUN Y J, YAPHARY Y L, POON C S. Experimental and mesoscale simulation studies of micro-mechanical properties of alite mixed with NaCl solutions[J]. Cem Concr Res, 2022, 159: 106890.

    [93] [93] JIN M, MA Y F, LI W W, et al. Multi-scale investigation on composition-structure of C-(A)-S-H with different Al/Si ratios under attack of decalcification action[J]. Cem Concr Res, 2023, 172: 107251.

    [94] [94] YANG J, DING Q J, ZHANG G Z, et al. Effect of sulfate attack on the composition and micro-mechanical properties of C-A-S-H gel in cement-slag paste: A combined study of nanoindentation and SEM-EDS[J]. Constr Build Mater, 2022, 345: 128275.

    [95] [95] ELKHADIRI I, PUERTAS F. The effect of curing temperature on sulphate-resistant cement hydration and strength[J]. Constr Build Mater, 2008, 22(7): 1331-1341.

    [96] [96] VOLLPRACHT A, LOTHENBACH B, SNELLINGS R, et al. The pore solution of blended cements: A review[J]. Mater Struct, 2016, 49(8): 3341-3367.

    [97] [97] HONG S Y, GLASSER F P. Alkali binding in cement pastes[J]. Cem Concr Res, 1999, 29(12): 1893-1903.

    [98] [98] WEI S H, ZHENG K R, CHEN W, et al. The correlation between Al incorporation and alkali fixation by calcium aluminosilicate hydrate: Observations from hydrated C3S blended with and without metakaolin[J]. Cem Concr Res, 2023, 172: 107249.

    [99] [99] MOHAMED A K, MOUTZOURI P, BERRUYER P, et al. The atomic-level structure of cementitious calcium aluminate silicate hydrate[J]. J Am Chem Soc, 2020, 142(25): 11060-11071.

    [100] [100] LI Z H, ZHANG T S, HU J, et al. Characterization of reaction products and reaction process of MgO-SiO2-H2O system at room temperature[J]. Constr Build Mater, 2014, 61: 252-259.

    [101] [101] SZCZERBA J, PROROK R, NIEEK E, et al. Influence of time and temperature on ageing and phases synthesis in the MgO-SiO2-H2O system[J]. Thermochim Acta, 2013, 567: 57-64.

    [102] [102] LIMEIRA J, ETXEBERRIA M, AGULL L, et al. Mechanical and durability properties of concrete made with dredged marine sand[J]. Constr Build Mater, 2011, 25(11): 4165-4174.

    [103] [103] ZHANG Y, LI Y W, DAI Y J, et al. Hydration evolution of MgO-SiO2 slurries in the presence of sodium metasilicate[J]. Ceram Int, 2018, 44(6): 6626-6633.

    [104] [104] NIED D, ENEMARK-RASMUSSEN K, L’HOPITAL E, et al. Properties of magnesium silicate hydrates (M-S-H)[J]. Cem Concr Res, 2016, 79: 323-332.

    [105] [105] TANG Y J, SCHOLLBACH K, BROUWERS H J H, et al. Effects of soluble magnesium on the structure of calcium silicate hydrate[J]. Constr Build Mater, 2021, 302: 124402.

    [106] [106] ROOSZ C, GRANGEON S, BLANC P, et al. Crystal structure of magnesium silicate hydrates (M-S-H): The relation with 2:1 Mg-Si phyllosilicates[J]. Cem Concr Res, 2015, 73: 228-237.

    [107] [107] FERNANDEZ L, ALONSO C, HIDALGO A, et al. The role of magnesium during the hydration of C3S and C-S-H formation. Scanning electron microscopy and mid-infrared studies[J]. Adv Cem Res, 2005, 17(1): 9-21.

    [108] [108] FERNANDEZ L, ALONSO C, ANDRADE C, et al. The interaction of magnesium in hydration of C3S and CSH formation using 29Si MAS-NMR[J]. J Mater Sci, 2008, 43(17): 5772-5783.

    [110] [110] KOMARNENI S, BREVAL E, ROY D M, et al. Reactions of some calcium silicates with metal cations[J]. Cem Concr Res, 1988, 18(2): 204-220.

    [111] [111] SHRIVASTAVA O P, KOMARNENI S, BREVAL E. Mg2+ uptake by synthetic tobermorite and xonotlite[J]. Cem Concr Res, 1991, 21(1): 83-90.

    [112] [112] ZHANG Y, GUO L, SHI J Y, et al. Full process of calcium silicate hydrate decalcification: Molecular structure, dynamics, and mechanical properties[J]. Cem Concr Res, 2022, 161: 106964.

    Tools

    Get Citation

    Copy Citation Text

    XU Linglin, SUN Zixuan, CHEN Yuting, ZHU Zheyu, WU Kai. Effect of Impurity Ions on Micro-/Nano-Structure of Calcium Silicate (Aluminate) Hydrate[J]. Journal of the Chinese Ceramic Society, 2025, 53(1): 212

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 6, 2024

    Accepted: Jan. 10, 2025

    Published Online: Jan. 10, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20240515

    Topics