Journal of Synthetic Crystals, Volume. 51, Issue 6, 1059(2022)
Synthesis, Structure and Properties of 3D Copper(I) Pseudohalide Compound Constructed by Conformationally Flexible N-Heterocylic Ligand
[1] [1] HU L X, GAO M Y, WEN T, et al. Synthesis of halide-modulated cuprous(Ⅰ) coordination polymers with mechanochromic and photocatalytic properties[J]. Inorganic Chemistry, 2017, 56(11): 6507-6511.
[2] [2] GIBBONS S K, HUGHES R P, GLUECK D S, et al. Synthesis, structure, and luminescence of copper(Ⅰ) halide complexes of chiral bis(phosphines)[J]. Inorganic Chemistry, 2017, 56(21): 12809-12820.
[3] [3] ZHAN S Z, LI M, ZHENG J, et al. Luminescent Cu4I4-Cu3(pyrazolate)3 coordination frameworks: postsynthetic ligand substitution leads to network displacement and entanglement[J]. Inorganic Chemistry, 2017, 56(21): 13446-13455.
[4] [4] AMO-OCHOA P, HASSANEIN K, GMEZ-GARCA C J, et al. Reversible stimulus-responsive Cu(Ⅰ) iodide pyridine coordination polymer[J]. Chemical Communications, 2015, 51(76): 14306-14309.
[5] [5] XU Y L, SHEN K S, MAO S S, et al. Mono- and tetranuclear copper(Ⅰ) complexes with N-heterocyclic chelating and triphenylphosphine ligands: crystal structures, luminescent and heterogeneous catalytic properties[J]. Applied Organometallic Chemistry, 2018, 32 (2): e4041.
[6] [6] CHEN Y, LI H X, LIU D, et al. Solvent effects on the assembly of [Cu2I2] or [Cu4I4] based coordination polymers: Isolation, structures, and luminescent properties[J].Crystal Growth & Design, 2008, 8(10): 3810-3816.
[7] [7] LI L L, YUAN R X, LIU L L, et al. Formation of [CuSCN]n-based topological structures via a family of flexible benzimidazolyl-based linkers with different spacer lengths[J]. Crystal Growth & Design, 2010, 10(4): 1929-1938.
[8] [8] ZHANG L, REN Z G, LI H X, et al. Cleaving the framework of CuX with a tetra pyrazolyl-based ligand to construct [CuX]n-based coordination polymers[J]. CrystEngComm, 2011, 13(5): 1400-1405.
[9] [9] HAO Z M, ZHANG X M. Ligand concentration controlled supramolecular isomerism in two CuSCN based coordination polymers with in situ synthesized 4, 4’- dipyridyl sulfide as a co-ligand[J]. Crystal Growth & Design, 2007, 7(1): 64-68.
[10] [10] LIANG S W, LI M X, SHAO M, et al. Synthesis, crystal structure and fluorescent property of two-dimensional Cu(Ⅰ) coordination polymers with cyanide, thiocyanate and triazole bridges[J]. Journal of Molecular Structure, 2008, 875(1/2/3): 17-21.
[11] [11] BARNETT S A, BLAKE A J, CHAMPNESS N R, et al. Structural isomerism in CuSCN coordination polymers[J]. Chemical Communications, 2002(15): 1640-1641.
[12] [12] LI M X, WANG H, LIANG S W, et al. Solvothermal synthesis and diverse coordinate structures of a series of luminescent copper(Ⅰ) thiocyanate coordination polymers based on N-heterocyclic ligands[J]. Crystal Growth & Design, 2009, 9(11): 4626-4633.
[13] [13] LU L R, SHAO M, WANG Z X, et al. Syntheses, structures and luminescence of three copper(Ⅰ) cyanide coordination polymers incorporating flexible N-donor ligands[J]. Inorganic Chemistry Communications, 2017, 79: 25-28.
[14] [14] ZHAN S Z, PENG R, LIN S H, et al. An unprecedented 2-D CuSCN coordination network containing both regular and irregular[Cu3(SCN)3]rings supported by a tridentate N-donor ligand[J]. CrystEngComm, 2010, 12(5): 1385-1387.
[15] [15] NTHER C, GREVE J, JE I, et al. Copper(Ⅰ) thiocyanate coordination polymers with dimethylpyrazine: synthesis, crystal structures, thermal and luminescence properties[J]. Solid State Sciences, 2003, 5(8): 1167-1176.
[16] [16] MILLER K M, MCCULLOUGH S M, LEPEKHINA E A, et al. Copper(Ⅰ) thiocyanate-amine networks: synthesis, structure, and luminescence behavior[J]. Inorganic Chemistry, 2011, 50(15): 7239-7249.
[17] [17] DENG Z P, QI H L, HUO L H, et al. Syntheses and structures of copper(Ⅰ) complexes based on CunXn (X=Br and I; n=1, 2 and 4) units and bis(pyridyl) ligands with longer flexible spacer[J]. Dalton Transactions, 2010, 39(42): 10038-10050.
[18] [18] XU Y L, MAO S S, SHEN K S, et al. Different structures of two Cu(Ⅰ) complexes constructed by bridging 2, 2-(1, 4-butanediyl)bis-1, 3-benzoxazole ligand: syntheses, structures and properties[J]. Inorganica Chimica Acta, 2018, 471: 17-22.
[19] [19] MAUTNER F A, FISCHER R C, SALEM N M H, et al. Miscellaneous dimensional coordination polymers and luminescence emission properties of cadmium(Ⅱ)-pseudohalide complexes[J]. Inorganica Chimica Acta, 2022, 535: 120871.
[20] [20] HAO Z M, WANG J, ZHANG X M. Red phosphorescent cuprous halide/pseudohalide coordination polymers with pyrimidine-2-thionates as Co-ligands[J]. CrystEngComm, 2010, 1103-1109.
[21] [21] REN S B, YANG X L, ZHANG J, et al. An infinite photoluminescent coordination nanotube[CuSCN(L)] ·(DMF)0.5[J]. CrystEngComm, 2009, 11(2): 246-248.
[22] [22] BLAKE A J, BROOKS N R, CHAMPNESS N R, et al. Two- and three-dimensional CuSCN co-ordination networks including new CuSCN structural motifs[J]. Journal of the Chemical Society, Dalton Transactions, 1999(16): 2813-2817.
[23] [23] GROOM C R, ALLEN F H. The Cambridge structural database in retrospect and prospect[J]. Angewandte Chemie International Edition, 2014, 53(3): 662-671.
[24] [24] SHELDRICK G M. SHELX-97, program for X-ray crystal structure solution and refinement[P]. Gttingen University: Germany, 1997.
[25] [25] SU Z H, ZHAO Z F, ZHOU B B, et al. Three novel coordination polymers constructed from[Cu(CN)] chains[J]. CrystEngComm, 2011, 13(5): 1474-1479.
[26] [26] HU S, ZHOU A J, ZHANG Y H, et al. 1D tubular chains and 3D polycatenane frameworks constructed with Cu2X2 dimers (X=Br-, I-, CN-) and flexible dipyridyl spacers[J]. Crystal Growth & Design, 2006, 6(11): 2543-2550.
[27] [27] DAI M, SU X R, WANG X, et al. Three zinc(Ⅱ) coordination polymers based on tetrakis(4-pyridyl)cyclobutane and naphthalenedicarboxylate linkers: solvothermal syntheses, structures, and photocatalytic properties[J]. Crystal Growth & Design, 2014, 14(1): 240-248.
[28] [28] WU H L, WANG K T, LIU B, et al. Synthesis, characterization, crystal structure and DNA-binding studies of two zinc(Ⅱ) complexes with the V-shaped bis(benzimidazole)-thiapropane and its derivative ligand[J]. Inorganica Chimica Acta, 2012, 384: 302-308.
[29] [29] SUNDARARAJAN M, SAILAJA V, KENNEDY L J, et al. Photocatalytic degradation of rhodamine B under visible light using nanostructured zinc doped cobalt ferrite: kinetics and mechanism[J]. Ceramics International, 2017, 43(1): 540-548.
[30] [30] WU Z B, YUAN X Z, ZHANG J, et al. Photocatalytic decontamination of wastewater containing organic dyes by metal-organic frameworks and their derivatives[J]. ChemCatChem, 2017, 9(1): 41-64.
[31] [31] FU Z X, LIN J, WANG L, et al. Cuprous iodide pseudopolymorphs based on imidazole ligand and their luminescence thermochromism[J]. Crystal Growth & Design, 2016, 16(4): 2322-2327.
[32] [32] YANG E C, SHI X J, LIU Z Y, et al. A cadmium(Ⅱ)- and a nickel(Ⅱ)-polymer with azide and 1, 3-bis(4-pyridyl)propane ligands showing neutral pentanuclear cluster-based 3D MOF and self-interpenetrated 2D undulated layer[J]. Inorganic Chemistry Communications, 2010, 13(6): 733-736.
[33] [33] LI Y W, CHEN W L, WANG Y H, et al. Entangled zinc-ditetrazolate frameworks involving in situ ligand synthesis and topological modulation by various secondary N-donor ligands[J]. Journal of Solid State Chemistry, 2009, 182(4): 736-743.
Get Citation
Copy Citation Text
QIN Yinglian, QIN Jianfang. Synthesis, Structure and Properties of 3D Copper(I) Pseudohalide Compound Constructed by Conformationally Flexible N-Heterocylic Ligand[J]. Journal of Synthetic Crystals, 2022, 51(6): 1059
Category:
Received: Mar. 1, 2022
Accepted: --
Published Online: Aug. 13, 2022
The Author Email: Yinglian QIN (qyl1982027@126.com)
CSTR:32186.14.