Laser & Optoelectronics Progress, Volume. 58, Issue 4, 0410007(2021)

Mass Classification of Breast Mammogram Based on Attention Mechanism and Transfer Learning

Wenhui Xu, Yijian Pei*, Donglin Gao, Jiude Zhu, and Yunkai Liu
Author Affiliations
  • School of Information, Yunnan University, Kunming, Yunnan 650500, China
  • show less
    References(23)

    [1] World Health Organization[2020-06-03]. Breast cancer [2020-06-03].https:∥www.who.int/cancer/prevention/diagnosisscreening/breast-cancer/en/..

    [2] Yin J H, Zhang Y, Lai J G et al. Global burden of disease cancer collaboration[J]. JAMA Oncology, 1, 505-527(2015).

    [6] Kooi T. Litjens G, van Ginneken B, et al. Large scale deep learning for computer aided detection of mammographic lesions[J]. Medical Image Analysis, 35, 303-312(2017).

    [9] Ai L M, Shi K Z. Low-grade gliomas MR images segmentation based on conditional generative adversarial networks[J]. Laser & Optoelectronics Progress, 57, 221004(2020).

    [11] Falconí L G, Pérez M, Aguilar W G. Transfer learning in breast mammogram abnormalities classification with mobilenet and nasnet[C]∥2019 International Conference on Systems, Signals and Image Processing (IWSSIP), June 5-7, 2019, Osijek,, 109-114(2019).

    [12] Sun L L, Xu Y. Research on classification method of mammography based on deep learning[J]. Computer Engineering and Applications, 54, 13-19(2018).

    [13] Yang J, Hu M D, Li L, Applications: 1-8 [2020-06-04]. http:∥kns.cnki.net/kcms/detail/11 et al. TP. 20191205.1030.002.html.(2127).

    [15] Li H Y, Chen D D, Nailon W H et al. A deep dual-path network for improved mammogram image processing[C]∥2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 12-17, 2019, Brighton, United Kingdom., 1224-1228(2019).

    [16] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA., 770-778(2016).

    [17] Woo S, Park J, Lee J Y et al[M]. CBAM: convolutional block attention module, 3-19(2018).

    [18] [18] DengJ, DongW, SocherR, et al.ImageNet: a large-scale hierarchical image database[C]∥2009 IEEE Conference on Computer Vision and Pattern Recognition, June 20-25, 2009, Miami, FL, USA. New York: IEEE Press, 2009: 248- 255.

    [21] Simonyan K. -09-04)[2020-06-04]. https:∥arxiv., org/abs/1409, 1556(2014).

    [22] Szegedy C, Vanhoucke V, Ioffe S et al. Rethinking the inception architecture for computer vision[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA., 2818-2826(2016).

    [23] Selvaraju R R, Cogswell M, Das A et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 128, 336-359(2020).

    Tools

    Get Citation

    Copy Citation Text

    Wenhui Xu, Yijian Pei, Donglin Gao, Jiude Zhu, Yunkai Liu. Mass Classification of Breast Mammogram Based on Attention Mechanism and Transfer Learning[J]. Laser & Optoelectronics Progress, 2021, 58(4): 0410007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jun. 9, 2020

    Accepted: Aug. 6, 2020

    Published Online: Feb. 8, 2021

    The Author Email: Pei Yijian (pei3p@ynu.edu.cn)

    DOI:10.3788/LOP202158.0410007

    Topics