Chinese Journal of Lasers, Volume. 47, Issue 2, 207013(2020)
Probes for Endoscopic Optical Coherence Tomography: Minimized Design and Depth of Focus Extension
[1] Herz P R, Chen Y, Aguirre A D et al. Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography[J]. Optics Express, 12, 3532-3542(2004).
[2] Ramakonar H, Quirk B C, Kirk R W et al. 4(12): eaav4992(2018).
[4] Li J W, Quirk B C, Noble P B et al. Flexible needle with integrated optical coherence tomography probe for imaging during transbronchial tissue aspiration[J]. Journal of Biomedical Optics, 22, 106002(2017).
[5] Villiger M, Lorenser D. McLaughlin R A, et al. Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour[J]. Scientific Reports, 6, 28771(2016).
[6] Sharma U, Kang J U. Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography[J]. Review of Scientific Instruments, 78, 113102(2007).
[8] Lee J, Chae Y, Ahn Y C et al. Ultra-thin and flexible endoscopy probe for optical coherence tomography based on stepwise transitional core fiber[J]. Biomedical Optics Express, 6, 1782-1796(2015).
[9] Ding Z H, Qiu J R, Shen Y et al. Lens-free all-fiber probe with an optimized output beam for optical coherence tomography[J]. Optics Letters, 42, 2814-2817(2017).
[10] Liu L B, Gardecki J A, Nadkarni S K et al. Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography[J]. Nature Medicine, 17, 1010-1014(2011).
[11] Drexler W, Morgner U, Ghanta R K et al. Ultrahigh-resolution ophthalmic optical coherence tomography[J]. Nature Medicine, 7, 502-507(2001).
[12] Ralston T S, Marks D L, Scott Carney P et al. Interferometric synthetic aperture microscopy[J]. Nature Physics, 3, 129-134(2007).
[13] Bo E, Luo Y M, Chen S et al. Depth-of-focus extension in optical coherence tomography via multiple aperture synthesis[J]. Optica, 4, 701-706(2017).
[14] Qi B, Phillip Himmer A, Maggie Gordon L et al. Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror[J]. Optics Communications, 232, 123-128(2004).
[15] Cobb M J, Liu X M, Li X D. Continuous focus tracking for real-time optical coherence tomography[J]. Optics Letters, 30, 1680-1682(2005).
[16] Bao W, Ding Z H, Qiu J R et al. Quasi-needle-like focus synthesized by optical coherence tomography[J]. Optics Letters, 42, 1385-1388(2017).
[17] Tan K M, Mazilu M, Chow T H et al. In-fiber common-path optical coherence tomography using a conical-tip fiber[J]. Optics Express, 17, 2375-2384(2009).
[18] Wang W, Wang G Y, Ma J et al. Miniature all-fiber axicon probe with extended Bessel focus for optical coherence tomography[J]. Optics Express, 27, 358-366(2019).
[19] Kim J, Xing J C, Nam H S et al. Endoscopic micro-optical coherence tomography with extended depth of focus using a binary phase spatial filter[J]. Optics Letters, 42, 379-382(2017).
[20] Lorenser D, Yang X J, Sampson D D. Ultrathin fiber probes with extended depth of focus for optical coherence tomography[J]. Optics Letters, 37, 1616-1618(2012).
[21] Yin B W, Hyun C, Gardecki J A et al. Extended depth of focus for coherence-based cellular imaging[J]. Optica, 4, 959-965(2017).
[22] Qiu J R, Shen Y, Shangguan Z W et al. All-fiber probe for optical coherence tomography with an extended depth of focus by a high-efficient fiber-based filter[J]. Optics Communications, 413, 276-282(2018).
[23] Tearney G, Boppart S, Bouma B et al. Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography[J]. Optics Letters, 21, 543-545(1996).
[24] Li X D, Chudoba C, Ko T et al. Imaging needle for optical coherence tomography[J]. Optics Letters, 25, 1520-1522(2000).
[26] Zhao M T, Huang Y, Kang J U. Sapphire ball lens-based fiber probe for common-path optical coherence tomography and its applications in corneal and retinal imaging[J]. Optics Letters, 37, 4835-4837(2012).
[27] Marrese M, Offerhaus H, Paardekam E et al. 70 μm diameter optical probe for common-path optical coherence tomography in air and liquids[J]. Optics Letters, 43, 5929-5932(2018).
[28] Ryu S Y, Choi H Y, Na J et al. Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography[J]. Applied Optics, 47, 1510-1516(2008).
[29] Qiu Y, Wang Y, Belfield K D et al. Ultrathin lensed fiber-optic probe for optical coherence tomography[J]. Biomedical Optics Express, 7, 2154-2162(2016).
[30] Tan K M, Shishkov M, Chee A et al. Flexible transbronchial optical frequency domain imaging smart needle for biopsy guidance[J]. Biomedical Optics Express, 3, 1947-1954(2012).
[31] Reed W A, Yan M F, Schnitzer M J. Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry[J]. Optics Letters, 27, 1794-1796(2002).
[32] Lorenser D, Yang X, Kirk R W et al. Ultrathin side-viewing needle probe for optical coherence tomography[J]. Optics Letters, 36, 3894-3896(2011).
[34] Li J W, Fejes P, Lorenser D et al. Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes[J]. Scientific Reports, 8, 14789(2018).
[36] Ding Z, Ren H, Zhao Y et al. High-resolution optical coherence tomography over a large depth range with an axicon lens[J]. Optics Letters, 27, 243-245(2002).
[37] Weber N, Spether D, Seifert A et al. Highly compact imaging using Bessel beams generated by ultraminiaturized multi-micro-axicon systems[J]. Journal of the Optical Society of America A, 29, 808-816(2012).
Get Citation
Copy Citation Text
Qiu Jianrong, Han Tao, Wang Di, Meng Jia, Liu Zhiyi, Ding Zhihua. Probes for Endoscopic Optical Coherence Tomography: Minimized Design and Depth of Focus Extension[J]. Chinese Journal of Lasers, 2020, 47(2): 207013
Category: biomedical photonics and laser medicine
Received: Oct. 8, 2019
Accepted: --
Published Online: Feb. 21, 2020
The Author Email: Zhihua Ding (zh_ding@zju.edu.cn)