Acta Optica Sinica, Volume. 34, Issue 9, 910002(2014)

Classification of Hyperspectral Remote Sensing Images Based on Bands Grouping and Classification Ensembles

Fan Liheng1、*, Lü Junwei1, and Deng Jiangsheng2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(28)

    [1] [1] Song Lin, Cheng Yongmei, Zhao Yongqiang. Hyper-spectrum classification based on sparse representation model and auto-regressive model [J]. Acta Optica Sinica, 2012, 32(3): 0330003.

    [3] [3] Paul M Mather, Magaly Koch. Computer Processing of Remotely-Sensed Images: An Introduction [M]. NewYork: John Wiley & Sons, 2011. 229-285.

    [4] [4] B M Shahshahani, D A Landgrebe. The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon [J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1087-1095.

    [6] [6] Q Jackson, D A Landgrebe. An adaptive classifier design for high-dimensional data analysis with a limited training dataset [J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(12): 2664-2679.

    [7] [7] L Zhang, B Du. Recent advances in hyperspectral image processing [J]. Geo-spatial Information Science, 2012, 15(3): 143-156.

    [8] [8] T G Dietterich. Machine learning research: four current directions [J]. Ai Magazine, 1997, 18(4): 97-136.

    [9] [9] Zhou Yang, Li Xiaorun, Zhao Liaoying. Modified linear-prediction based band selection for hyperspectral image [J]. Acta Optica Sinica, 2013, 33(8): 0828002.

    [10] [10] Ge Liang, Wang Bin, Zhang Liming. Band selection based on band clustering for hyperspectral imagery [J]. Journal of Computer-Aided Design & Computer Graphics, 2012, 24(11): 1447-1454.

    [11] [11] B Guo, S R Gunn, R I Damper, et al.. Band selection for hyperspectral image classification using mutual information [J]. Geoscience and Remote Sensing Letters, 2006, 3(4): 522-526.

    [12] [12] H Z M Shafri, A Suhaili, S Mansor. The performance of maximum likelihood, spectral angle mapper, neural network and decision tree classifiers in hyperspectral image analysis [J]. Journal of Computer Science, 2007, 3(6): 419-423.

    [13] [13] A Tsymbal, S Puuronena, D W Pattersonb. Ensemble feature selection with the simple bayesian classification [J]. Information Fusion, 2003, 4(2): 87-100.

    [14] [14] Xie Yuancheng. Research on Classifier ensemble [D]. Nanjing: Nanjing University of Science and Technology, 2009.

    [15] [15] Z H Zhou, J X Wu, W Tang. Ensembling neural networks: many could be better than all [J]. Artificial Intelligence, 2002, 137(1-2): 239-263.

    [16] [16] G Brown, L I Kuncheva. “Good” and “Bad” Diversity in Majority Vote Ensembles[M]. Multiple Classifier Systems Berlin Heidelberg: Springer, 2010. 124-133.

    [17] [17] L I Kuncheva, C J Whitaker, C A Shipp, et al.. Is independence good for combining classifiers [C]. IEEE 2000. Proceedings. 15th International Conference on Pattern recognition, 2000, 2: 168-171.

    [18] [18] L I Kuncheva, C J Whitaker, C A Shipp, et al.. Limits on the majority vote accuracy in classifier fusion [J]. Pattern Analysis and Applications, 2003, 6(1): 22-31.

    [19] [19] Y Liu, X Yao. Ensemble learning via negative correlation [J]. Neural Networks, 1999,12(10): 1399-1404.

    [20] [20] Tang Yaohua, Gao Jinghuai, Bao Qianzong. Novel selective support vector machine ensemble learning algorithm [J]. Journel of Xi′an Jiaotong University, 2008, 42(10): 1221-1225.

    [21] [21] B Wu, C Chen, T M Kechadi, et al.. A comparative evaluation of filter-based feature selection methods for hyper-spectral band selection [J]. International Journal of Remote Sensing, 2013, 34(22): 7974-7990.

    [22] [22] Liu Ying. The Study of Semisupervised Ensembled Support Vector Machines for Land Cover Classification [D]. Hefei: University of Chinese Academy of Sciences, 2013. 44-45.

    [23] [23] R A Montserud, R Leamans. Comparing global vegetation maps with the kappa statistic [J]. Ecological Modeling,1992, 62(4): 275-293.

    [24] [24] A Galal, H Hasan, I F Iman. Learnable hyperspectral measures [J]. Egyptian Informatics Journal, 2012, 13(2): 85-94.

    [25] [25] S V Forero, J Angulo. Classification of hyperspectral images by tensor modeling and additive morphological decomposition [J]. Pattern Recognition, 2013, 46(2): 566-577.

    [26] [26] N Alajian, Y Bazi, F Melgani, et al.. Fusion of supervised and unsupervised learning for improved classification of hyperspectral images [J]. Information Sciences, 2012, 217(6): 39-55.

    [27] [27] L David. Hyperspectral image data analysisi [J]. Signal Processing Magazine, 2002, 19(1): 17-28.

    [28] [28] G Valls, D Tuia, L Bruzzone, et al.. Advances in hyperspectral image classification: earth monitoring with statistical learning methods [J]. Signal Processing Magazine, 2014, 31(1): 45-54.

    CLP Journals

    [1] Hou Yimin, Tang Yue, Sun Xiaoxue, Sui Wenxiu. Application of Gaussian-Rayleigh Mixture Model in Remote Sensing Image Segmentation[J]. Acta Optica Sinica, 2015, 35(s1): 110004

    [2] Zhao Chunhui, You Wei, Qi Bin, Wang Jia. Real-Time Anomaly Detection Algorithm for Hyperspectral Remote Sensing by Using Recursive Polynomial Kernel Function[J]. Acta Optica Sinica, 2016, 36(2): 228002

    [3] Chen Jianpei, Xie Liheng, Ma Hongjian, Zhu Weizhan, Cai Zhigang. Selectable Imaging Spectrum Detection and System Design[J]. Laser & Optoelectronics Progress, 2015, 52(7): 73007

    [4] Liao Jianshang, Wang Liguo. Hyperspectral Image Classification Method Based on Fusion with Two Kinds of Spatial Information[J]. Laser & Optoelectronics Progress, 2017, 54(8): 81002

    [5] Wang Jianing. Hyperspectral Image Classification Based on Joint Sparse Representation and Morphological Feature Extraction[J]. Laser & Optoelectronics Progress, 2016, 53(8): 82801

    [6] Li Tie, Sun Jinguang, Zhang Xinjun, Wang Xing. Research of Hyperspectral Image Classification Based on Hierarchical Sparse Representation Feature Learning[J]. Laser & Optoelectronics Progress, 2016, 53(9): 91001

    [7] Ma Lina, Zong Xiaoying, Li Yongqiang. Analysis of Focusing Camera Based on of Image Spectrum[J]. Acta Optica Sinica, 2015, 35(7): 710002

    [8] Huang Hong, He Kai, Zheng Xinlei, Shi Guangyao. Spatial-Spectral Feature Extraction of Hyperspectral Image Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101001

    Tools

    Get Citation

    Copy Citation Text

    Fan Liheng, Lü Junwei, Deng Jiangsheng. Classification of Hyperspectral Remote Sensing Images Based on Bands Grouping and Classification Ensembles[J]. Acta Optica Sinica, 2014, 34(9): 910002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Mar. 11, 2014

    Accepted: --

    Published Online: Aug. 15, 2014

    The Author Email: Liheng Fan (fan_li_heng@126.com)

    DOI:10.3788/aos201434.0910002

    Topics