Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 1, 158(2021)

Research progress of inkjet printed perovskite optoelectronic devices

YU Chao, CHEN Chen, WU Dan, JIANG Xin, and DUAN Yu
Author Affiliations
  • [in Chinese]
  • show less
    References(94)

    [1] [1] YUE L Y, YAN B, ATTRIDGE M, et al. Light absorption in perovskite solar cell: fundamentals and plasmonic enhancement of infrared band absorption [J]. Solar Energy, 2016, 124: 143-152.

    [4] [4] WANG R, MUJAHID M, DUAN Y, et al. A review of perovskites solar cell stability [J]. Advanced Functional Materials, 2019, 29(47): 1808843.

    [7] [7] CHEN C, HAN T H, TAN S, et al. Efficient flexible inorganic perovskite light-emitting diodes fabricated with CsPbBr3 emitters prepared via low-temperature in situ dynamic thermal crystallization [J]. Nano Letters, 2020, 20(6): 4673-4680.

    [8] [8] ZHANG X L, WANG W G, XU B, et al. Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering [J]. Nano Energy, 2017, 37: 40-45.

    [9] [9] LIN K B, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent [J]. Nature, 2018, 562(7726): 245-248.

    [10] [10] SON D Y, KIM S G, SEO J Y, et al. Universal approach toward hysteresis-free perovskite solar cell via defect engineering [J]. Journal of the American Chemical Society, 2018, 140(4): 1358-1364.

    [11] [11] YOO J J, WIEGHOLD S, SPONSELLER M C, et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss [J]. Energy & Environmental Science, 2019, 12(7): 2192-2199.

    [12] [12] WANG H X, LEI J, GAO F, et al. Magnetic field-assisted perovskite film preparation for enhanced performance of solar cells [J]. ACS Applied Materials & Interfaces, 2017, 9(26): 21756-21762.

    [13] [13] ZHANG Q, SU R, DU W N, et al. Advances in small perovskite-based lasers [J]. Small Methods, 2017, 1(9): 1700163.

    [14] [14] CHEN S T, ROH K, LEE J, et al. A photonic crystal laser from solution based organo-lead iodide perovskite thin films [J]. ACS Nano, 2016, 10(4): 3959-3967.

    [15] [15] LI C L, HAN C, ZHANG Y B, et al. Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films [J]. Solar Energy Materials and Solar Cells, 2017, 172: 341-346.

    [16] [16] DU B W, YANG W Q, JIANG Q, et al. Plasmonic-functionalized broadband perovskite photodetector [J]. Advanced Optical Materials, 2018, 6(8): 1701271.

    [17] [17] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.

    [18] [18] NREL. Best research-cell efficiencies [EB/OL]. [2020-09-28]. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200925.pdf.

    [19] [19] GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (version 56) [J]. Progress in Photovoltaics, 2020, 28(7): 629-638.

    [20] [20] TYONA M D. A theoritical study on spin coating technique [J]. Advances in Materials Research, 2013, 2(4): 195-208.

    [21] [21] KADDACHI Z, BELHI M, BEN KAROUI M, et al. Design and development of spin coating system [C]//Proceedings of the 2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering. Sousse, Tunisia: IEEE, 2016: 558-562.

    [22] [22] HUANG H B, SHI J J, ZHU L F, et al. Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell [J]. Nano Energy, 2016, 27: 352-358.

    [23] [23] LI C P, YIN J, CHEN R H, et al. Monoammonium porphyrin for blade-coating stable large-area perovskite solar cells with >18% efficiency [J]. Journal of the American Chemical Society, 2019, 141(15): 6345-6351.

    [24] [24] LIU M Z, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition [J]. Nature, 2013, 501(7467): 395-398.

    [25] [25] LIU Y F, TSAI M H, PAI Y F, et al. Control of droplet formation by operating waveform for inks with various viscosities in piezoelectric inkjet printing [J]. Applied Physics A, 2013, 111(2): 509-516.

    [26] [26] KUANG M X, WANG L B, SONG Y L. Controllable printing droplets for high-resolution patterns [J]. Advanced Materials, 2014, 26(40): 6950-6958.

    [27] [27] SINGH M, HAVERINEN H M, DHAGAT P, et al. Inkjet printing-process and its applications [J]. Advanced Materials, 2010, 22(6): 673-685.

    [28] [28] HERMERSCHMIDT F, MATHIES F, SCHRDER V R F, et al. Finally, inkjet-printed metal halide perovskite LEDs-utilizing seed crystal templating of salty PEDOT∶PSS [J]. Materials Horizons, 2020, 7(7): 1773-1781.

    [29] [29] WEI Z H, CHEN H N, YAN K Y, et al. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells [J]. Angewandte Chemie International Edition, 2014, 53(48): 13239-13243.

    [30] [30] MATHIES F, BRENNER P, HERNANDEZ-SOSA G, et al. Inkjet-printed perovskite distributed feedback lasers [J]. Optics Express, 2018, 26(2): A144-A152.

    [31] [31] JANG Y, TAMBUNAN I H, TAK H, et al. Non-contact printing of high aspect ratio Ag electrodes for polycrystalline silicone solar cell with electrohydrodynamic jet printing [J]. Applied Physics Letters, 2013, 102(12): 123901.

    [32] [32] LIU C T, LEE W H, SHIH T L. Synthesis of ZnO nanoparticles to fabricate a mask-free thin-film transistor by inkjet printing [J]. Journal of Nanotechnology, 2012, 2012: 710908.

    [33] [33] YANG P H, ZHANG L, KANG D J, et al. High-resolution inkjet printing of quantum dot light-emitting microdiode arrays [J]. Advanced Optical Materials, 2020, 8(1): 1901429.

    [34] [34] AND B, BAGLIO S, BULSARA A R, et al. Low-cost inkjet printing technology for the rapid prototyping of transducers [J]. Sensors, 2017, 17(4): 748.

    [35] [35] MICHELIS F, BODELOT L, BONNASSIEUX Y, et al. Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes [J]. Carbon, 2015, 95: 1020-1026.

    [36] [36] SHIN K Y, HONG J Y, JANG J. Flexible and transparent graphene films as acoustic actuator electrodes using inkjet printing [J]. Chemical Communications, 2011, 47(30): 8527-8529.

    [37] [37] DERBY B. Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution [J]. Annual Review of Materials Research, 2010, 40: 395-414.

    [38] [38] BASARAN O A, GAO H J, BHAT P P. Nonstandard inkjets [J]. Annual Review of Fluid Mechanics, 2013, 45: 85-113.

    [39] [39] LI J, ROSSIGNOL F, MACDONALD J. Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing [J]. Lab on a Chip, 2015, 15(12): 2538-2558.

    [40] [40] VUDDANDA P R, ALOMARI M, DODOO C C, et al. Personalisation of warfarin therapy using thermal ink-jet printing [J]. European Journal of Pharmaceutical Sciences, 2018, 117: 80-87.

    [41] [41] THUAU D, KALLITSIS K, DOS SANTOS F D, et al. All inkjet-printed piezoelectric electronic devices: energy generators, sensors and actuators [J]. Journal of Materials Chemistry C, 2017, 5(38): 9963-9966.

    [42] [42] LI X L, YUN T Y, KIM K W, et al. Voltage-tunable dual image of electrostatic force-assisted dispensing printed, tungsten trioxide-based electrochromic devices with a symmetric configuration [J]. ACS Applied Materials & Interfaces, 2020, 12(3): 4022-4030.

    [43] [43] HADIMIOGLU B, ELROD S A, STEINMETZ D L, et al. Acoustic ink printing [C]//Proceedings of IEEE 1992 Ultrasonics Symposium Proceedings. Tucson, AZ, USA: IEEE, 1992.

    [44] [44] KANG S H, KIM S, SOHN D K, et al. Analysis of drop-on-demand piezo inkjet performance [J]. Physics of Fluids, 2020, 32(2): 022007.

    [45] [45] KRAINER S, SMIT C, HIRN U. The effect of viscosity and surface tension on inkjet printed picoliter dots [J]. RSC Advances, 2019, 9(54): 31708-31719.

    [46] [46] PARK H Y, KANG B J, LEE D, et al. Control of surface wettability for inkjet printing by combining hydrophobic coating and plasma treatment [J]. Thin Solid Films, 2013, 546: 162-166.

    [47] [47] LEE S H, SHIN K Y, HWANG J Y, et al. Silver inkjet printing with control of surface energy and substrate temperature [J]. Journal of Micromechanics and Microengineering, 2008, 18(7): 075014.

    [48] [48] YU X H, XING R B, PENG Z X, et al. To inhibit coffee ring effect in inkjet printing of light-emitting polymer films by decreasing capillary force [J]. Chinese Chemical Letters, 2019, 30(1): 135-138.

    [49] [49] SOLTMAN D, SUBRAMANIAN V. Inkjet-printed line morphologies and temperature control of the coffee ring effect [J]. Langmuir, 2008, 24(5): 2224-2231.

    [50] [50] ZHANG Z L, ZHANG X Y, XIN Z Q, et al. Controlled inkjetting of a conductive pattern of silver nanoparticles based on the coffee-ring effect [J]. Advanced Materials, 2013, 25(46): 6714-6718.

    [51] [51] KALYTCHUK S, WANG Y, POLKOV K, et al. Carbon dot fluorescence-lifetime-encoded anti-counterfeiting [J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29902-29908.

    [52] [52] ANDRES J, HERSCH R D, MOSER J E, et al. A new anti-counterfeiting feature relying on invisible luminescent full color images printed with lanthanide-based inks [J]. Advanced Functional Materials, 2014, 24(32): 5029-5036.

    [53] [53] WANG H J, YAO W J, TIAN Q Y, et al. Printable monodisperse all-inorganic perovskite quantum dots: synthesis and banknotes protection applications [J]. Advanced Materials Technologies, 2018, 3(11): 1800150.

    [54] [54] ZHANG F, SHI Z F, LI S, et al. Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting [J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28013-28022.

    [55] [55] TONG Y L, ZHANG Y W, MA K Z, et al. One-step synthesis of FA-directing FAPbBr3 perovskite nanocrystals toward high-performance display [J]. ACS Applied Materials & Interfaces, 2018, 10(37): 31603-31609.

    [56] [56] BYUN J, CHO H, WOLF C, et al. Efficient visible quasi-2D perovskite light-emitting diodes [J]. Advanced Materials, 2016, 28(34): 7515-7520.

    [57] [57] JIA S Q, LI G Y, LIU P, et al. Highly luminescent and stable green quasi-2D perovskite-embedded polymer sheets by inkjet printing [J]. Advanced Functional Materials, 2020, 30(24): 1910817.

    [58] [58] BU T L, LIU X P, LI J, et al. Dynamic antisolvent engineering for spin coating of 10×10 cm2 perovskite solar module approaching 18% [J]. Solar RRL, 2020, 4(2): 1900263.

    [59] [59] JANG D M, PARK K, KIM D H, et al. Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning [J]. Nano Letters, 2015, 15(8): 5191-5199.

    [60] [60] WONG Y C, WU W B, WANG T, et al. Color patterning of luminescent perovskites via light-mediated halide exchange with haloalkanes [J]. Advanced Materials, 2019, 31(24): 1901247.

    [61] [61] HE P, DERBY B. Controlling coffee ring formation during drying of inkjet printed 2D inks [J]. Advanced Materials Interfaces, 2017, 4(22): 1700944.

    [62] [62] LIU Y, LI F S, QIU L C, et al. Fluorescent microarrays of in situ crystallized perovskite nanocomposites fabricated for patterned applications by using inkjet printing [J]. ACS Nano, 2019, 13(2): 2042-2049.

    [63] [63] DUAN M, FENG Z Y, WU Y W, et al. Inkjet-printed micrometer-thick patterned perovskite quantum dot films for efficient blue-to-green photoconversion [J]. Advanced Materials Technologies, 2019, 4(12): 1900779.

    [64] [64] GAO A J, YAN J, WANG Z J, et al. Printable CsPbBr3 perovskite quantum dot ink for coffee ring-free fluorescent microarrays using inkjet printing [J]. Nanoscale, 2020, 12(4): 2569-2577.

    [65] [65] LI D Y, WANG J J, LI M Z, et al. Inkjet printing matrix perovskite quantum dot light-emitting devices [J]. Advanced Materials Technologies, 2020, 5(6): 2000099.

    [66] [66] HASHMI S G, MARTINEAU D, LI X, et al. Air processed inkjet infiltrated carbon based printed perovskite solar cells with high stability and reproducibility [J]. Advanced Materials Technologies, 2017, 2(1): 1600183.

    [67] [67] LI S G, JIANG K J, SU M J, et al. Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells [J]. Journal of Materials Chemistry A, 2015, 3(17): 9092-9097.

    [68] [68] BAG M, JIANG Z W, RENNA L A, et al. Rapid combinatorial screening of inkjet-printed alkyl-ammonium cations in perovskite solar cells [J]. Materials Letters, 2016, 164: 472-475.

    [69] [69] CHEN S, ZHANG L H, YAN L J, et al. Accelerating the screening of perovskite compositions for photovoltaic applications through high-throughput inkjet printing [J]. Advanced Functional Materials, 2019, 29(49): 1905487.

    [70] [70] ABZIEHER T, MATHIES F, HETTERICH M, et al. Additive-assisted crystallization dynamics in two-step fabrication of perovskite solar cells [J]. Physica Status Solidi (A), 2017, 214(12): 1700509.

    [71] [71] HUCKABA A J, LEE Y, XIA R, et al. Inkjet-printed mesoporous TiO2 and perovskite layers for high efficiency perovskite solar cells [J]. Energy Technology, 2019, 7(2): 317-324.

    [72] [72] LI P W, LIANG C, BAO B, et al. Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells [J]. Nano Energy, 2018, 46: 203-211.

    [73] [73] HSIEH T Y, WEI T C, WU K L, et al. Efficient perovskite solar cells fabricated using an aqueous lead nitrate precursor [J]. Chemical Communications, 2015, 51(68): 13294-13297.

    [75] [75] MATHIES F, EGGERS H, RICHARDS B S, et al. Inkjet-printed triple cation perovskite solar cells [J]. ACS Applied Energy Materials, 2018, 1(5): 1834-1839.

    [76] [76] ABZIEHER T, MOGHADAMZADEH S, SCHACKMAR F, et al. Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics [J]. Advanced Energy Materials, 2019, 9(12): 1802995.

    [77] [77] LIU J Y, SHABBIR B, WANG C J, et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots [J]. Advanced Materials, 2019, 31(30): 1901644.

    [78] [78] MESCHER H, SCHACKMAR F, EGGERS H, et al. Flexible inkjet-printed triple cation perovskite X-ray detectors [J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15774-15784.

    [79] [79] MIN M, HOSSAIN R F, ADHIKARI N, et al. Inkjet-printed organohalide 2D layered perovskites for high-speed photodetectors on flexible polyimide substrates [J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10809-10819.

    [80] [80] CHEN Z L, TUREDI B, ALSALLOUM A Y, et al. Single-crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency [J]. ACS Energy Letters, 2019, 4(6): 1258-1259.

    [81] [81] GU Z K, WANG K, LI H Z, et al. Direct-writing multifunctional perovskite single crystal arrays by inkjet printing [J]. Small, 2017, 13(8): 1603217.

    [82] [82] GU Z K, HUANG Z D, HU X T, et al. In situ inkjet printing of the perovskite single-crystal array-embedded polydimethylsiloxane film for wearable light-emitting devices [J]. ACS Applied Materials & Interfaces, 2020, 12(19): 22157-22162.

    [83] [83] SHI L F, MENG L H, JIANG F, et al. In situ inkjet printing strategy for fabricating perovskite quantum dot patterns [J]. Advanced Functional Materials, 2019, 29(37): 1903648.

    [84] [84] LIU Y, ZHENG Y, ZHU Y, et al. Unclonable perovskite fluorescent dots with fingerprint pattern for multilevel anti-counterfeiting [J]. ACS Applied Materials & Interfaces, 2020, 12(34): 39649-39656.

    [85] [85] LU W G, WU X G, HUANG S, et al. Strong polarized photoluminescence from stretched perovskite-nanocrystal-embedded polymer composite films [J]. Advanced Optical Materials, 2017, 5(23): 1700594.

    [86] [86] LIN C H, KANG C Y, WU T Z, et al. Giant optical anisotropy of perovskite nanowire array films [J]. Advanced Functional Materials, 2020, 30(14): 1909275.

    [87] [87] MATHIES F, ABZIEHER T, HOCHSTUHL A, et al. Multipass inkjet printed planar methylammonium lead iodide perovskite solar cells [J]. Journal of Materials Chemistry A, 2016, 4(48): 19207-19213.

    [88] [88] LIANG C, LI P W, GU H, et al. One-step inkjet printed perovskite in air for efficient light harvesting [J]. Solar RRL, 2018, 2(2): 1700217.

    [89] [89] EGGERS H, SCHACKMAR F, ABZIEHER T, et al. Inkjet-printed micrometer-thick perovskite solar cells with large columnar grains [J]. Advanced Energy Materials, 2020, 10(6): 1903184.

    [90] [90] LIU Y, LI F S, PERUMAL VEERAMALAI C, et al. Inkjet-printed photodetector arrays based on hybrid perovskite CH3NH3PbI3 microwires [J]. ACS Applied Materials & Interfaces, 2017, 9(13): 11662-11668.

    [91] [91] ALAMRI A M, LEUNG S, VASEEM M, et al. Fully inkjet-printed photodetector using a graphene/perovskite/graphene heterostructure [J]. IEEE Transactions on Electron Devices, 2019, 66(6): 2657-2661.

    [92] [92] HUCKABA A J, GARCIA-BENITO I, KANDA H, et al. Inkjet-printed TiO2/fullerene composite films for planar perovskite solar cells [J]. Helvetica Chimica Acta, 2020, 103(5): e2000044.

    [93] [93] GHENO A, PHAM T T T, DI BIN C, et al. Printable WO3 electron transporting layer for perovskite solar cells: influence on device performance and stability [J]. Solar Energy Materials and Solar Cells, 2017, 161: 347-354.

    [94] [94] GHENO A, HUANG Y, BOUCL J, et al. Toward highly efficient inkjet-printed perovskite solar cells fully processed under ambient conditions and at low temperature [J]. Solar RRL, 2018, 2(11): 1800191.

    [95] [95] SCHACKMAR F, EGGERS H, FRERICKS M, et al. Perovskite solar cells with all-inkjet-printed absorber and charge transport layers [J]. Advanced Materials Technologies, 2020, doi: 10.1002/admt.202000271.

    [96] [96] XIE M L, LU H, ZHANG L P, et al. Fully solution-processed semi-transparent perovskite solar cells with ink-jet printed silver nanowires top electrode [J]. Solar RRL, 2018, 2(2): 1700184.

    [97] [97] XIE M L, WANG J, KANG J C, et al. Super-flexible perovskite solar cells with high power-per-weight on 17 μm thick PET substrate utilizing printed Ag nanowires bottom and top electrodes [J]. Flexible and Printed Electronics, 2019, 4(3): 034002.

    CLP Journals

    [1] WU Yu, LIN Aiping, ZHAO Danjiao, FAN Lanlan, ZHANG Jidi, WANG Shufen, CAO Lei, GU Feng. Additive Manufacturing of Optoelectronic Functional Thin Films and Devices[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1715

    Tools

    Get Citation

    Copy Citation Text

    YU Chao, CHEN Chen, WU Dan, JIANG Xin, DUAN Yu. Research progress of inkjet printed perovskite optoelectronic devices[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(1): 158

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 5, 2020

    Accepted: --

    Published Online: Aug. 22, 2021

    The Author Email:

    DOI:10.37188/cjlcd.2020-0262

    Topics