Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 1, 158(2021)
Research progress of inkjet printed perovskite optoelectronic devices
[1] [1] YUE L Y, YAN B, ATTRIDGE M, et al. Light absorption in perovskite solar cell: fundamentals and plasmonic enhancement of infrared band absorption [J]. Solar Energy, 2016, 124: 143-152.
[4] [4] WANG R, MUJAHID M, DUAN Y, et al. A review of perovskites solar cell stability [J]. Advanced Functional Materials, 2019, 29(47): 1808843.
[7] [7] CHEN C, HAN T H, TAN S, et al. Efficient flexible inorganic perovskite light-emitting diodes fabricated with CsPbBr3 emitters prepared via low-temperature in situ dynamic thermal crystallization [J]. Nano Letters, 2020, 20(6): 4673-4680.
[8] [8] ZHANG X L, WANG W G, XU B, et al. Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering [J]. Nano Energy, 2017, 37: 40-45.
[9] [9] LIN K B, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent [J]. Nature, 2018, 562(7726): 245-248.
[10] [10] SON D Y, KIM S G, SEO J Y, et al. Universal approach toward hysteresis-free perovskite solar cell via defect engineering [J]. Journal of the American Chemical Society, 2018, 140(4): 1358-1364.
[11] [11] YOO J J, WIEGHOLD S, SPONSELLER M C, et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss [J]. Energy & Environmental Science, 2019, 12(7): 2192-2199.
[12] [12] WANG H X, LEI J, GAO F, et al. Magnetic field-assisted perovskite film preparation for enhanced performance of solar cells [J]. ACS Applied Materials & Interfaces, 2017, 9(26): 21756-21762.
[13] [13] ZHANG Q, SU R, DU W N, et al. Advances in small perovskite-based lasers [J]. Small Methods, 2017, 1(9): 1700163.
[14] [14] CHEN S T, ROH K, LEE J, et al. A photonic crystal laser from solution based organo-lead iodide perovskite thin films [J]. ACS Nano, 2016, 10(4): 3959-3967.
[15] [15] LI C L, HAN C, ZHANG Y B, et al. Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films [J]. Solar Energy Materials and Solar Cells, 2017, 172: 341-346.
[16] [16] DU B W, YANG W Q, JIANG Q, et al. Plasmonic-functionalized broadband perovskite photodetector [J]. Advanced Optical Materials, 2018, 6(8): 1701271.
[17] [17] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
[18] [18] NREL. Best research-cell efficiencies [EB/OL]. [2020-09-28]. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200925.pdf.
[19] [19] GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (version 56) [J]. Progress in Photovoltaics, 2020, 28(7): 629-638.
[20] [20] TYONA M D. A theoritical study on spin coating technique [J]. Advances in Materials Research, 2013, 2(4): 195-208.
[21] [21] KADDACHI Z, BELHI M, BEN KAROUI M, et al. Design and development of spin coating system [C]//Proceedings of the 2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering. Sousse, Tunisia: IEEE, 2016: 558-562.
[22] [22] HUANG H B, SHI J J, ZHU L F, et al. Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell [J]. Nano Energy, 2016, 27: 352-358.
[23] [23] LI C P, YIN J, CHEN R H, et al. Monoammonium porphyrin for blade-coating stable large-area perovskite solar cells with >18% efficiency [J]. Journal of the American Chemical Society, 2019, 141(15): 6345-6351.
[24] [24] LIU M Z, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition [J]. Nature, 2013, 501(7467): 395-398.
[25] [25] LIU Y F, TSAI M H, PAI Y F, et al. Control of droplet formation by operating waveform for inks with various viscosities in piezoelectric inkjet printing [J]. Applied Physics A, 2013, 111(2): 509-516.
[26] [26] KUANG M X, WANG L B, SONG Y L. Controllable printing droplets for high-resolution patterns [J]. Advanced Materials, 2014, 26(40): 6950-6958.
[27] [27] SINGH M, HAVERINEN H M, DHAGAT P, et al. Inkjet printing-process and its applications [J]. Advanced Materials, 2010, 22(6): 673-685.
[28] [28] HERMERSCHMIDT F, MATHIES F, SCHRDER V R F, et al. Finally, inkjet-printed metal halide perovskite LEDs-utilizing seed crystal templating of salty PEDOT∶PSS [J]. Materials Horizons, 2020, 7(7): 1773-1781.
[29] [29] WEI Z H, CHEN H N, YAN K Y, et al. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells [J]. Angewandte Chemie International Edition, 2014, 53(48): 13239-13243.
[30] [30] MATHIES F, BRENNER P, HERNANDEZ-SOSA G, et al. Inkjet-printed perovskite distributed feedback lasers [J]. Optics Express, 2018, 26(2): A144-A152.
[31] [31] JANG Y, TAMBUNAN I H, TAK H, et al. Non-contact printing of high aspect ratio Ag electrodes for polycrystalline silicone solar cell with electrohydrodynamic jet printing [J]. Applied Physics Letters, 2013, 102(12): 123901.
[32] [32] LIU C T, LEE W H, SHIH T L. Synthesis of ZnO nanoparticles to fabricate a mask-free thin-film transistor by inkjet printing [J]. Journal of Nanotechnology, 2012, 2012: 710908.
[33] [33] YANG P H, ZHANG L, KANG D J, et al. High-resolution inkjet printing of quantum dot light-emitting microdiode arrays [J]. Advanced Optical Materials, 2020, 8(1): 1901429.
[34] [34] AND B, BAGLIO S, BULSARA A R, et al. Low-cost inkjet printing technology for the rapid prototyping of transducers [J]. Sensors, 2017, 17(4): 748.
[35] [35] MICHELIS F, BODELOT L, BONNASSIEUX Y, et al. Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes [J]. Carbon, 2015, 95: 1020-1026.
[36] [36] SHIN K Y, HONG J Y, JANG J. Flexible and transparent graphene films as acoustic actuator electrodes using inkjet printing [J]. Chemical Communications, 2011, 47(30): 8527-8529.
[37] [37] DERBY B. Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution [J]. Annual Review of Materials Research, 2010, 40: 395-414.
[38] [38] BASARAN O A, GAO H J, BHAT P P. Nonstandard inkjets [J]. Annual Review of Fluid Mechanics, 2013, 45: 85-113.
[39] [39] LI J, ROSSIGNOL F, MACDONALD J. Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing [J]. Lab on a Chip, 2015, 15(12): 2538-2558.
[40] [40] VUDDANDA P R, ALOMARI M, DODOO C C, et al. Personalisation of warfarin therapy using thermal ink-jet printing [J]. European Journal of Pharmaceutical Sciences, 2018, 117: 80-87.
[41] [41] THUAU D, KALLITSIS K, DOS SANTOS F D, et al. All inkjet-printed piezoelectric electronic devices: energy generators, sensors and actuators [J]. Journal of Materials Chemistry C, 2017, 5(38): 9963-9966.
[42] [42] LI X L, YUN T Y, KIM K W, et al. Voltage-tunable dual image of electrostatic force-assisted dispensing printed, tungsten trioxide-based electrochromic devices with a symmetric configuration [J]. ACS Applied Materials & Interfaces, 2020, 12(3): 4022-4030.
[43] [43] HADIMIOGLU B, ELROD S A, STEINMETZ D L, et al. Acoustic ink printing [C]//Proceedings of IEEE 1992 Ultrasonics Symposium Proceedings. Tucson, AZ, USA: IEEE, 1992.
[44] [44] KANG S H, KIM S, SOHN D K, et al. Analysis of drop-on-demand piezo inkjet performance [J]. Physics of Fluids, 2020, 32(2): 022007.
[45] [45] KRAINER S, SMIT C, HIRN U. The effect of viscosity and surface tension on inkjet printed picoliter dots [J]. RSC Advances, 2019, 9(54): 31708-31719.
[46] [46] PARK H Y, KANG B J, LEE D, et al. Control of surface wettability for inkjet printing by combining hydrophobic coating and plasma treatment [J]. Thin Solid Films, 2013, 546: 162-166.
[47] [47] LEE S H, SHIN K Y, HWANG J Y, et al. Silver inkjet printing with control of surface energy and substrate temperature [J]. Journal of Micromechanics and Microengineering, 2008, 18(7): 075014.
[48] [48] YU X H, XING R B, PENG Z X, et al. To inhibit coffee ring effect in inkjet printing of light-emitting polymer films by decreasing capillary force [J]. Chinese Chemical Letters, 2019, 30(1): 135-138.
[49] [49] SOLTMAN D, SUBRAMANIAN V. Inkjet-printed line morphologies and temperature control of the coffee ring effect [J]. Langmuir, 2008, 24(5): 2224-2231.
[50] [50] ZHANG Z L, ZHANG X Y, XIN Z Q, et al. Controlled inkjetting of a conductive pattern of silver nanoparticles based on the coffee-ring effect [J]. Advanced Materials, 2013, 25(46): 6714-6718.
[51] [51] KALYTCHUK S, WANG Y, POLKOV K, et al. Carbon dot fluorescence-lifetime-encoded anti-counterfeiting [J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29902-29908.
[52] [52] ANDRES J, HERSCH R D, MOSER J E, et al. A new anti-counterfeiting feature relying on invisible luminescent full color images printed with lanthanide-based inks [J]. Advanced Functional Materials, 2014, 24(32): 5029-5036.
[53] [53] WANG H J, YAO W J, TIAN Q Y, et al. Printable monodisperse all-inorganic perovskite quantum dots: synthesis and banknotes protection applications [J]. Advanced Materials Technologies, 2018, 3(11): 1800150.
[54] [54] ZHANG F, SHI Z F, LI S, et al. Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting [J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28013-28022.
[55] [55] TONG Y L, ZHANG Y W, MA K Z, et al. One-step synthesis of FA-directing FAPbBr3 perovskite nanocrystals toward high-performance display [J]. ACS Applied Materials & Interfaces, 2018, 10(37): 31603-31609.
[56] [56] BYUN J, CHO H, WOLF C, et al. Efficient visible quasi-2D perovskite light-emitting diodes [J]. Advanced Materials, 2016, 28(34): 7515-7520.
[57] [57] JIA S Q, LI G Y, LIU P, et al. Highly luminescent and stable green quasi-2D perovskite-embedded polymer sheets by inkjet printing [J]. Advanced Functional Materials, 2020, 30(24): 1910817.
[58] [58] BU T L, LIU X P, LI J, et al. Dynamic antisolvent engineering for spin coating of 10×10 cm2 perovskite solar module approaching 18% [J]. Solar RRL, 2020, 4(2): 1900263.
[59] [59] JANG D M, PARK K, KIM D H, et al. Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning [J]. Nano Letters, 2015, 15(8): 5191-5199.
[60] [60] WONG Y C, WU W B, WANG T, et al. Color patterning of luminescent perovskites via light-mediated halide exchange with haloalkanes [J]. Advanced Materials, 2019, 31(24): 1901247.
[61] [61] HE P, DERBY B. Controlling coffee ring formation during drying of inkjet printed 2D inks [J]. Advanced Materials Interfaces, 2017, 4(22): 1700944.
[62] [62] LIU Y, LI F S, QIU L C, et al. Fluorescent microarrays of in situ crystallized perovskite nanocomposites fabricated for patterned applications by using inkjet printing [J]. ACS Nano, 2019, 13(2): 2042-2049.
[63] [63] DUAN M, FENG Z Y, WU Y W, et al. Inkjet-printed micrometer-thick patterned perovskite quantum dot films for efficient blue-to-green photoconversion [J]. Advanced Materials Technologies, 2019, 4(12): 1900779.
[64] [64] GAO A J, YAN J, WANG Z J, et al. Printable CsPbBr3 perovskite quantum dot ink for coffee ring-free fluorescent microarrays using inkjet printing [J]. Nanoscale, 2020, 12(4): 2569-2577.
[65] [65] LI D Y, WANG J J, LI M Z, et al. Inkjet printing matrix perovskite quantum dot light-emitting devices [J]. Advanced Materials Technologies, 2020, 5(6): 2000099.
[66] [66] HASHMI S G, MARTINEAU D, LI X, et al. Air processed inkjet infiltrated carbon based printed perovskite solar cells with high stability and reproducibility [J]. Advanced Materials Technologies, 2017, 2(1): 1600183.
[67] [67] LI S G, JIANG K J, SU M J, et al. Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells [J]. Journal of Materials Chemistry A, 2015, 3(17): 9092-9097.
[68] [68] BAG M, JIANG Z W, RENNA L A, et al. Rapid combinatorial screening of inkjet-printed alkyl-ammonium cations in perovskite solar cells [J]. Materials Letters, 2016, 164: 472-475.
[69] [69] CHEN S, ZHANG L H, YAN L J, et al. Accelerating the screening of perovskite compositions for photovoltaic applications through high-throughput inkjet printing [J]. Advanced Functional Materials, 2019, 29(49): 1905487.
[70] [70] ABZIEHER T, MATHIES F, HETTERICH M, et al. Additive-assisted crystallization dynamics in two-step fabrication of perovskite solar cells [J]. Physica Status Solidi (A), 2017, 214(12): 1700509.
[71] [71] HUCKABA A J, LEE Y, XIA R, et al. Inkjet-printed mesoporous TiO2 and perovskite layers for high efficiency perovskite solar cells [J]. Energy Technology, 2019, 7(2): 317-324.
[72] [72] LI P W, LIANG C, BAO B, et al. Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells [J]. Nano Energy, 2018, 46: 203-211.
[73] [73] HSIEH T Y, WEI T C, WU K L, et al. Efficient perovskite solar cells fabricated using an aqueous lead nitrate precursor [J]. Chemical Communications, 2015, 51(68): 13294-13297.
[75] [75] MATHIES F, EGGERS H, RICHARDS B S, et al. Inkjet-printed triple cation perovskite solar cells [J]. ACS Applied Energy Materials, 2018, 1(5): 1834-1839.
[76] [76] ABZIEHER T, MOGHADAMZADEH S, SCHACKMAR F, et al. Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics [J]. Advanced Energy Materials, 2019, 9(12): 1802995.
[77] [77] LIU J Y, SHABBIR B, WANG C J, et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots [J]. Advanced Materials, 2019, 31(30): 1901644.
[78] [78] MESCHER H, SCHACKMAR F, EGGERS H, et al. Flexible inkjet-printed triple cation perovskite X-ray detectors [J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15774-15784.
[79] [79] MIN M, HOSSAIN R F, ADHIKARI N, et al. Inkjet-printed organohalide 2D layered perovskites for high-speed photodetectors on flexible polyimide substrates [J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10809-10819.
[80] [80] CHEN Z L, TUREDI B, ALSALLOUM A Y, et al. Single-crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency [J]. ACS Energy Letters, 2019, 4(6): 1258-1259.
[81] [81] GU Z K, WANG K, LI H Z, et al. Direct-writing multifunctional perovskite single crystal arrays by inkjet printing [J]. Small, 2017, 13(8): 1603217.
[82] [82] GU Z K, HUANG Z D, HU X T, et al. In situ inkjet printing of the perovskite single-crystal array-embedded polydimethylsiloxane film for wearable light-emitting devices [J]. ACS Applied Materials & Interfaces, 2020, 12(19): 22157-22162.
[83] [83] SHI L F, MENG L H, JIANG F, et al. In situ inkjet printing strategy for fabricating perovskite quantum dot patterns [J]. Advanced Functional Materials, 2019, 29(37): 1903648.
[84] [84] LIU Y, ZHENG Y, ZHU Y, et al. Unclonable perovskite fluorescent dots with fingerprint pattern for multilevel anti-counterfeiting [J]. ACS Applied Materials & Interfaces, 2020, 12(34): 39649-39656.
[85] [85] LU W G, WU X G, HUANG S, et al. Strong polarized photoluminescence from stretched perovskite-nanocrystal-embedded polymer composite films [J]. Advanced Optical Materials, 2017, 5(23): 1700594.
[86] [86] LIN C H, KANG C Y, WU T Z, et al. Giant optical anisotropy of perovskite nanowire array films [J]. Advanced Functional Materials, 2020, 30(14): 1909275.
[87] [87] MATHIES F, ABZIEHER T, HOCHSTUHL A, et al. Multipass inkjet printed planar methylammonium lead iodide perovskite solar cells [J]. Journal of Materials Chemistry A, 2016, 4(48): 19207-19213.
[88] [88] LIANG C, LI P W, GU H, et al. One-step inkjet printed perovskite in air for efficient light harvesting [J]. Solar RRL, 2018, 2(2): 1700217.
[89] [89] EGGERS H, SCHACKMAR F, ABZIEHER T, et al. Inkjet-printed micrometer-thick perovskite solar cells with large columnar grains [J]. Advanced Energy Materials, 2020, 10(6): 1903184.
[90] [90] LIU Y, LI F S, PERUMAL VEERAMALAI C, et al. Inkjet-printed photodetector arrays based on hybrid perovskite CH3NH3PbI3 microwires [J]. ACS Applied Materials & Interfaces, 2017, 9(13): 11662-11668.
[91] [91] ALAMRI A M, LEUNG S, VASEEM M, et al. Fully inkjet-printed photodetector using a graphene/perovskite/graphene heterostructure [J]. IEEE Transactions on Electron Devices, 2019, 66(6): 2657-2661.
[92] [92] HUCKABA A J, GARCIA-BENITO I, KANDA H, et al. Inkjet-printed TiO2/fullerene composite films for planar perovskite solar cells [J]. Helvetica Chimica Acta, 2020, 103(5): e2000044.
[93] [93] GHENO A, PHAM T T T, DI BIN C, et al. Printable WO3 electron transporting layer for perovskite solar cells: influence on device performance and stability [J]. Solar Energy Materials and Solar Cells, 2017, 161: 347-354.
[94] [94] GHENO A, HUANG Y, BOUCL J, et al. Toward highly efficient inkjet-printed perovskite solar cells fully processed under ambient conditions and at low temperature [J]. Solar RRL, 2018, 2(11): 1800191.
[95] [95] SCHACKMAR F, EGGERS H, FRERICKS M, et al. Perovskite solar cells with all-inkjet-printed absorber and charge transport layers [J]. Advanced Materials Technologies, 2020, doi: 10.1002/admt.202000271.
[96] [96] XIE M L, LU H, ZHANG L P, et al. Fully solution-processed semi-transparent perovskite solar cells with ink-jet printed silver nanowires top electrode [J]. Solar RRL, 2018, 2(2): 1700184.
[97] [97] XIE M L, WANG J, KANG J C, et al. Super-flexible perovskite solar cells with high power-per-weight on 17 μm thick PET substrate utilizing printed Ag nanowires bottom and top electrodes [J]. Flexible and Printed Electronics, 2019, 4(3): 034002.
Get Citation
Copy Citation Text
YU Chao, CHEN Chen, WU Dan, JIANG Xin, DUAN Yu. Research progress of inkjet printed perovskite optoelectronic devices[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(1): 158
Category:
Received: Oct. 5, 2020
Accepted: --
Published Online: Aug. 22, 2021
The Author Email: