Laser & Optoelectronics Progress, Volume. 60, Issue 2, 0217003(2023)

Polyp Segmentation Method Combining HarDNet and Reverse Attention

Ziqi Han1, Qiaohong Liu2、*, Chen Ling2, Jiawei Liu1, and Cunjue Liu1
Author Affiliations
  • 1College of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2College of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
  • show less
    Figures & Tables(9)
    HraNet model structure
    Structure comparison diagram of DenseNet and HarDNet
    Reverse attention block
    Receptive field block
    Comparison of segmentation results of colonic polyps
    • Table 1. Detailed implementation parameters of HarDNet68

      View table

      Table 1. Detailed implementation parameters of HarDNet68

      ParametermStride 2Stride 4Stride 8Stride 16Stride 32
      Value1.73×3,32,stride is 28(HDB),k=14,t=12816(HDB),k=16,t=25616(HDB),k=40,t=6404(HDB),k=160,t=1024
      3×3,6416(HDB),k=20,t=320
    • Table 2. Comparison of segmentation effects of different methods on Kvasir SEG and CVC ClinicDB datasets

      View table

      Table 2. Comparison of segmentation effects of different methods on Kvasir SEG and CVC ClinicDB datasets

      DatasetMethodmDicemIoUFβwSαEϕmaxMAE
      Kvasir SEGUNet0.8180.7460.7940.8580.8930.055
      UNet++0.8210.7430.8080.8620.9100.048
      SFA0.7230.6110.6700.7820.8490.075
      PraNet0.8980.8400.8850.9150.9480.030
      HraNet0.9010.8450.8900.9170.9440.027
      CVC ClinicDBUNet0.8230.7550.8110.8890.9540.019
      UNet++0.7940.7290.7850.8730.9310.022
      SFA0.7000.6070.6470.7930.8850.042
      PraNet0.8990.8490.8960.9360.9790.009
      HraNet0.9300.8790.9280.9490.9800.008
    • Table 3. Generalization capability test results

      View table

      Table 3. Generalization capability test results

      DatasetMethodmDicemIoUFβwSαEϕmaxMAE
      CVC ColonDBUNet0.5120.4440.4980.7120.7760.061
      UNet++0.4830.4100.4670.6910.7600.064
      SFA0.4690.3470.3790.6340.7650.094
      PraNet0.7090.6400.6960.8190.8690.045
      HraNet0.7290.6600.7200.8300.8580.038
      ETISLarib Polyp DBUNet0.3980.3350.3660.6840.7400.036
      UNet++0.4010.3440.3900.6830.7760.035
      SFA0.2970.2170.2310.5570.6330.109
      PraNet0.6280.5670.6000.7940.8410.031
      HraNet0.6500.5810.6170.7970.8270.035
      EndoseceUNet0.7100.6270.6840.8430.8760.022
      UNet++0.7070.6240.6870.8390.8980.018
      SFA0.4670.3290.3410.6400.8170.065
      PraNet0.8710.7970.8430.9250.9720.010
      HraNet0.8920.8240.8750.9370.9640.007
    • Table 4. Comparison of training time and reasoning speed of different methods based on same platform

      View table

      Table 4. Comparison of training time and reasoning speed of different methods based on same platform

      DatasetMethodEpochTraining /minInference /(frame·s-1mDicemIoU
      CVC ClinicDBUNet50~70~1260.8230.755
      UNet++50~80~530.7940.729
      SFA200>600~700.7000.607
      PraNet50~75~1150.8990.849
      HraNet50~33~1480.9300.879
    Tools

    Get Citation

    Copy Citation Text

    Ziqi Han, Qiaohong Liu, Chen Ling, Jiawei Liu, Cunjue Liu. Polyp Segmentation Method Combining HarDNet and Reverse Attention[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0217003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical Optics and Biotechnology

    Received: Oct. 8, 2021

    Accepted: Nov. 22, 2021

    Published Online: Jan. 6, 2023

    The Author Email: Qiaohong Liu (hqllqh@163.com)

    DOI:10.3788/LOP212665

    Topics