Chinese Journal of Lasers, Volume. 50, Issue 22, 2201004(2023)
Passively Mode‐Locked Tm
[1] Vangipuram R, Hamill S S, Friedman P M. Accelerated tattoo removal with acoustic shock wave therapy in conjunction with a picosecond laser[J]. Lasers in Surgery and Medicine, 50, 890-892(2018).
[2] Hintikka M, Kostamovaara J. Experimental investigation into laser ranging with sub-ns laser pulses[J]. IEEE Sensors Journal, 18, 1047-1053(2018).
[3] Rahman M A, de la Fuente G F, Carretero J M et al. Sub-ns-pulsed laser cleaning of an archaeological bone from the Sierra de Atapuerca, Spain: a case study[J]. SN Applied Sciences, 3, 865(2021).
[4] Okuno M, Kano H, Leproux P et al. Ultrabroadband (>2000 cm-1) multiplex coherent anti-Stokes Raman scattering spectroscopy using a subnanosecond supercontinuum light source[J]. Optics Letters, 32, 3050-3052(2007).
[5] Maunier C, Bertussi B, Damiani D et al. Comparison of ns and sub-ns laser conditioning of KDP and DKDP crystals for high-power lasers[J]. Proceedings of SPIE, 6720, 67201L(2007).
[6] Pavel N, Tsunekane M, Taira T. Composite, all-ceramics, high-peak power Nd∶ YAG/Cr4+∶YAG monolithic micro-laser with multiple-beam output for engine ignition[J]. Optics Express, 19, 9378-9384(2011).
[7] Lim H H, Taira T. Sub-nanosecond laser induced air-breakdown with giant-pulse duration tuned Nd∶YAG ceramic micro-laser by cavity-length control[J]. Optics Express, 25, 6302-6310(2017).
[8] Chuchumishev D, Marchev G, Buchvarov I et al. Sub-ns OPO based on PPKTP with 1 mJ idler energy at 2.8 μm[C](2014).
[9] Bhandari R, Taira T. Palm-top size megawatt peak power ultraviolet microlaser[J]. Optical Engineering, 52, 076102(2013).
[10] Han S, Liu Y Q, Zhang F et al. Sub-nanosecond passively Q-switched Nd∶YVO4/Cr4+∶YAG microchip lasers[J]. Infrared Physics & Technology, 68, 197-200(2015).
[11] Lim H H, Taira T. High peak power Nd∶YAG/Cr∶YAG ceramic microchip laser with unstable resonator[J]. Optics Express, 27, 31307-31315(2019).
[12] Rong X F, Yang Y M, Peng S Z et al. Sub-nanosecond diode-pumped passively Q-switched Nd∶LuAG ceramic microchip lasers[J]. Optics & Laser Technology, 158, 108901(2023).
[13] Liu X, Tan C Y, Cheng Y et al. 7 kHz sub-nanosecond microchip laser amplified by a grazing incidence double pass slab amplifier[J]. Chinese Optics Letters, 19, 021403(2021).
[14] Gribanov A, Yakovin M, Yakovin D et al. Subharmonic mode locking of a Q-switched Nd∶YAG laser[J]. Chinese Optics Letters, 21, 031406(2023).
[15] Mužík J, Kubeček V, Jelínek M et al. 1.2 W actively mode-locked Tm∶YLF laser[J]. Proceedings of SPIE, 9441, 94410E(2014).
[16] Mužík J, Jelínek M, Jr, Vyhlídal D et al. 2.6 W diode-pumped actively mode-locked Tm∶YLF laser[J]. Laser Physics Letters, 12, 035802(2015).
[17] Ma J, Qin Z P, Xie G Q et al. Review of mid-infrared mode-locked laser sources in the 2.0‒3.5 μm spectral region[J]. Applied Physics Reviews, 6, 021317(2019).
[18] Wang L, Chen W D, Zhao Y G et al. Power-scalable sub-100-fs Tm laser at 2.08 μm[J]. High Power Laser Science and Engineering, 9, e50(2021).
[19] Pan Z B, Wang Y C, Zhao Y G et al. Generation of 84-fs pulses from a mode-locked Tm∶CNNGG disordered garnet crystal laser[J]. Photonics Research, 6, 800-804(2018).
[20] Wang Y C, Zhao Y G, Pan Z B et al. 78 fs SWCNT-SA mode-locked Tm∶CLNGG disordered garnet crystal laser at 2017 nm[J]. Optics Letters, 43, 4268-4271(2018).
[21] Zhao Y G, Wang Y C, Zhang X Z et al. 87 fs mode-locked Tm, Ho∶CaYAlO4 laser at ∼2043 nm[J]. Optics Letters, 43, 915-918(2018).
[22] Zhao Y G, Wang Y C, Chen W D et al. 67-fs pulse generation from a mode-locked Tm, Ho∶CLNGG laser at 2083 nm[J]. Optics Express, 27, 1922-1928(2019).
[23] Li Y F, Yao B Q, Wang Y Z. Diode-pumped CW Tm∶GdVO4 laser at 1.9 μm[J]. Chinese Optics Letters, 4, 175-176(2006).
[24] Li Y F, Yao B Q, Liu Y M et al. Widely tunable CW diode-pumped 1.9-μm Tm∶GdVO4 laser at room temperature[J]. Chinese Physics Letters, 24, 724-726(2007).
[25] Wang Z G, Song C W, Li Y F et al. CW and pulsed operation of a diode-end-pumped Tm∶GdVO4 laser at room temperature[J]. Laser Physics Letters, 6, 105-108(2009).
[26] Ge P G, Liu J, Jiang S Z et al. Compact Q-switched 2 μm Tm∶GdVO4 laser with MoS2 absorber[J]. Photonics Research, 3, 256-259(2015).
[27] Loiko P, Bogusławski J, Serres J M et al. Sb2Te3 thin film for the passive Q-switching of a Tm∶GdVO4 laser[J]. Optical Materials Express, 8, 1723-1732(2018).
[28] Esser M J D, Preussler D, Bernhardi E H et al. Diode-end-pumped Tm∶GdVO4 laser operating at 1818 and 1915 nm[J]. Applied Physics B, 97, 351-356(2009).
[29] Lan J L, Xu B, Zhang Y Z et al. Tunable and passively Q-switched laser operation of Tm∶CaYAlO4 between 1848 nm and 1876 nm[J]. Optics & Laser Technology, 109, 33-38(2019).
Get Citation
Copy Citation Text
Weijie Zhou, Quanxin Na, Yu Wang, Changwen Xu, Dianyuan Fan. Passively Mode‐Locked Tm
Category: laser devices and laser physics
Received: Feb. 14, 2023
Accepted: Mar. 27, 2023
Published Online: Nov. 7, 2023
The Author Email: Xu Changwen (chwxu@szu.edu.cn)