Infrared and Laser Engineering, Volume. 51, Issue 11, 20220546(2022)
Research progress on fast 3D fluorescence microscopic imaging (invited)
[1] Lakadamyali M. High resolution imaging of neuronal connec-tivity[J]. Journal of Microscopy, 248, 111-116(2012).
[2] Xu K, Babcock H P, Zhuang X W. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton[J]. Nature Methods, 9, 185-188(2012).
[3] Jungmann R, Avendano M S, Woehrstein J B, et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and exchange-PAINT[J]. Nature Methods, 11, 313-318(2014).
[4] Lin J R, Fallahi-Sichani M, Sorger P K. Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method[J]. Nature Communications, 6, 8390(2015).
[5] Peng X H, Huang X S, Du K, et al. High spatiotemporal resolution and low photo-toxicity fluorescence imaging in live cells and in vivo[J]. Biochemical Society Transactions, 47, 1635-1650(2019).
[6] Kandel M E, He Y C R, Lee Y J, et al. Phase imaging with computational specificity (PICS) for measuring dry mass changes in sub-cellular compartments[J]. Nature Commu-nications, 11, 6256(2020).
[7] Ghukasyan V V, Kao F J. Monitoring cellular metabolism with fluorescence lifetime of reduced nicotinamide adenine dinucleotide[J]. Journal of Physical Chemistry C, 113, 11532-11540(2009).
[8] Ouzounov D G, Wang T Y, Wang M R, et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain[J]. Nature Methods, 14, 388-390(2017).
[9] Zhang X D, Wang H X, Wang H, et al. Single-layered graphitic-C3 N4 quantum dots for two-photon fluorescence imaging of cellular nucleus[J]. Advanced Materials, 26, 4438-4443(2014).
[10] von Diezmann A, Shechtman Y, Moerner W E. Three-dimensional localization of single molecules for super resolution imaging and single-particle tracking[J]. Chemical Reviews, 117, 7244-7275(2017).
[11] Hedde P N, Ranjit S, Gratton E. 3D fluorescence anisotropy imaging using selective plane illumination microscopy[J]. Optics Express, 23, 22308-22317(2015).
[12] Wu Y, Wu X D, Lu R, et al. Resonant scanning with large field of view reduces photobleaching and enhances fluorescence yield in STED microscopy[J]. Scientific Reports, 5, 14766(2015).
[13] Palero J, Santos S, Artigas D, et al. A simple scanless two-photon fluorescence microscope using selective plane illumination[J]. Optics Express, 18, 8491-8498(2010).
[14] Zhang Z K, Cong L, Bai L, et al. Light-field microscopy for fast volumetric brain imaging[J]. Journal of Neuroscience Methods, 352, 109083(2021).
[15] Zhu L, Zhang W, Elnatan D, et al. Faster STORM using compressed sensing[J]. Nature Methods, 9, 721-723(2012).
[16] Soini J T, Schrader M, Hanninen P E, et al. Image formation and data acquisition in a stage scanning 4Pi confocal fluorescence microscope[J]. Applied Optics, 36, 8929-8934(1997).
[17] van Munster E B, Goedhart J, Kremers G J, et al. Combination of a spinning disc confocal unit with frequency-domain fluorescence lifetime imaging microscopy[J]. Cytometry Part A, 71A, 207-214(2007).
[18] Conchello J A, Lichtman J W. Optical sectioning microscopy[J]. Nature Methods, 2, 920-931(2005).
[19] Qi X L, Yang T, Li L H, et al. Fluorescence micro-optical sectioning tomography using acousto-optical deflector-based confocal scheme[J]. Neurophotonics, 2, 041406(2015).
[20] Zong W J, Wu R L, Chen S Y, et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging[J]. Nature Methods, 18, 46-49(2021).
[21] Ruprecht A K, Wiesendanger T F, Tiziani H J. Chromatic confocal microscopy with a finite pinhole size[J]. Optics Letters, 29, 2130-2132(2004).
[22] Ishii H, Otomo K, Takahashi T, et al. Focusing new light on brain functions: multiphoton microscopy for deep and super-resolution imaging[J]. Neuroscience Research, 179, 24-30(2022).
[23] Arbabi E, Li J Q, Hutchins R J, et al. Two-photon microscopy with a double-wavelength metasurface objectivel ens[J]. Nano Letters, 18, 4943-4948(2018).
[24] Zhu S J, Yang Q L, Antaris A L, et al. Molecular imaging of biological systems with a clickable dye in the broad 800-to 1, 700-nm near-infrared window[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 962-967(2017).
[25] Yang W J, Carrillo-Reid L, Bando Y, et al. Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions[J]. Elife, 7, e32671(2018).
[26] Scully A D, Ostler R B, MacRobert A J, et al. Laser line-scanning confocal fluorescence imaging of the photodynamic action of aluminum and zinc phthalocyanines in V79-4 Chinese hamster fibroblasts[J]. Photochemistry and Photobiology, 68, 199-204(1998).
[27] Piyawattanametha W, Barretto R P J, Ko T H, et al. Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror[J]. Optics Letters, 31, 2018-2020(2006).
[28] Boutilier R M, Park J S, Lee H. High-speed two-photon laser scanning microscopy imaging of in vivo blood cells in rapid circulation at velocities of up to 1.2 millimeters per second[J]. Current Optics and Photonics, 2, 595-605(2018).
[29] Zhang T, Hernandez O, Chrapkiewicz R, et al. Kilohertz two-photon brain imaging in awake mice[J]. Nature Methods, 16, 1119-1122(2019).
[30] Woods E, Courtney J, Scholz D, et al. Tracking protein dynamics with photoconvertible Dendra2 on spinning disk confocal systems[J]. Journal of Microscopy, 256, 197-207(2014).
[31] Oketani R, Suda H, Uegaki K, et al. Visible-wavelength two-photon excitation microscopy with multifocus scanning for volumetric live-cell imaging[J]. Journal of Biomedical Optics, 25, 014502(2020).
[32] Chien Y F, Lin J Y, Yeh P T, et al. Dual GRIN lens two-photon endoscopy for high-speed volumetric and deep brain imaging[J]. Biomedical Optics Express, 12, 162-172(2021).
[33] York A G, Parekh S H, Nogare D D, et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy[J]. Nature Methods, 9, 749-754(2012).
[34] Chen Z Y, Mc Larney B, Rebling J, et al. High-speed large-field multifocal illumination fluorescence microscopy[J]. Laser & Photonics Reviews, 14, 1900070(2020).
[35] Wu J L, Liang Y J, Chen S, et al. Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo[J]. Nature Methods, 17, 287-290(2020).
[36] Duocastella M, Sun B, Arnold C B. Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics[J]. Journal of Biomedical Optics, 17, 050505(2012).
[37] Weisenburger S, Tejera F, Demas J, et al. Volumetric Ca2+ imaging in the mouse brain using hybrid multiplexed sculpted light microscopy[J]. Cell, 177, 1050-1066(2019).
[38] Lu R W, Liang Y J, Meng G H, et al. Rapid mesoscale volumetric imaging of neural activity with synaptic resolution[J]. Nature Methods, 17, 291-294(2020).
[39] Hao X, Li Y M, Fu S, et al. Review of 4Pi fluorescence nanoscopy[J]. Engineering, 11, 146-153(2022).
[40] Tortarolo G, Sun Y S, Teng K W, et al. Photon-separation to enhance the spatial resolution of pulsed STED microscopy[J]. Nanoscale, 11, 1754-1761(2019).
[41] Velasco M G M, Zhang M Y, Antonello J, et al. 3D super-resolution deep-tissue imaging in living mice[J]. Optica, 8, 442-450(2021).
[42] Li B, Wu C Y, Wang M R, et al. An adaptive excitation source for high-speed multiphoton microscopy[J]. Nature Methods, 17, 163-166(2020).
[43] [43] Hillman E M C, Voleti V, Li W Z, et al. Lightsheet microscopy in neuroscience[M]Annual Review of Neuroscience, 2019.
[44] Gibbs H C, Mota S M, Hart N A, et al. Navigating the light-sheet image analysis software landscape: concepts for driving cohesion from data acquisition to analysis[J]. Frontiers in Cell and Developmental Biology, 9, 739079(2021).
[45] Poola P K, Afzal M I, Yoo Y, et al. Light sheet microscopy for histopathology applications[J]. Biomedical Engineering Letters, 9, 279-291(2019).
[46] Gu P C, Huang Z X, Ping M, et al. Thinner and longer working distance light sheet illumination and microscopic imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 7300107(2021).
[47] Liu T L, Upadhyayula S, Milkie D E, et al. Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms[J]. Science, 360, 284-284(2018).
[48] Fei P, Nie J, Lee J, et al. Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens[J]. Advanced Photonics, 1, 016002(2019).
[49] Fahrbach F O, Voigt F F, Schmid B, et al. Rapid 3D light-sheet microscopy with a tunable lens[J]. Optics Express, 21, 21010-21026(2013).
[50] Haslehurst P, Yang Z Y, Dholakia K, et al. Fast volume-scanning light sheet microscopy reveals transient neuronal events[J]. Biomedical Optics Express, 9, 2154-2167(2018).
[51] Lin P Y, Hwang S P L, Lee C H, et al. Two-photon scanned light sheet fluorescence microscopy with axicon imaging for fast volumetric imaging[J]. Journal of Biomedical Optics, 26, 116503(2021).
[52] Olarte O E, Andilla J, Artigas D, et al. Decoupled illumination detection in light sheet microscopy for fast volumetric imaging[J]. Optica, 2, 702-705(2015).
[53] Yang B, Chen X Y, Wang Y N, et al. Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution[J]. Nature Methods, 16, 501-504(2019).
[54] Yang B, Lange M, Millett-Sikking A, et al. DaXi-high-resolution, large imaging volume and multi-view single-objective light-sheet microscopy[J]. Nature Methods, 19, 461-469(2022).
[55] Cai Y H, Chen Y Z, Xia Y Q, . et al. Single-lens light-sheet fluorescence microscopy based on micro-mirror array[J]. Laser & Photonics Reviews, 16, 2100026(2022).
[56] Wang D P, Zhu Z J, Xu Z Y, et al. Neuroimaging with light field microscopy: a mini review of imaging systems[J]. European Physical Journal-Special Topics, 231, 749-761(2022).
[57] Broxton M, Grosenick L, Yang S, et al. Wave optics theory and 3-D deconvolution for the light field microscope[J]. Optics Express, 21, 25418-25439(2013).
[58] Wang D P, Roy S, Rudzite A M, et al. High-resolution light-field microscopy with patterned illumination[J]. Biomedical Optics Express, 12, 3887-3901(2021).
[59] Prevedel R, Yoon Y G, Hoffmann M, et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy[J]. Nature Methods, 11, 727-730(2014).
[60] Wagner N, Norlin N, Gierten J, et al. Instantaneous isotropic volumetric imaging of fast biological processes[J]. Nature Methods, 16, 497-500(2019).
[61] Wu J M, Lu Z, Jian D, et al. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale[J]. Cell, 184, 3318-3332.e17(2021).
[62] Pan Z, Lu M, Xia S. Diffraction-assisted light field microscopy for microtomography and digital volume correlation with improved spatial resolution[J]. Experimental Mechanics, 59, 713-724(2019).
[63] He K, Wang X L, Wang Z H W, et al. Snapshot multifocal light field microscopy[J]. Optics Express, 28, 12108-12120(2020).
[64] Geng Q, Fu Z Q, Chen S C. High-resolution 3D light-field imaging[J]. Journal of Biomedical Optics, 25, 106502(2020).
[65] Wang Z Q, Zhu L X, Zhang H, et al. Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning[J]. Nature Methods, 18, 551-556(2021).
[66] Liu J D, Xu T F, Yue W R, et al. Light-field moment microscopy with noise reduction[J]. Optics Express, 23, 29154-29162(2015).
[67] Wang H C, Chen N, Zheng S S, et al. Fast and high-resolution light field acquisition using defocus modulation[J]. Applied Optics, 57, A250-A256(2018).
[68] Truong T V, Holland D B, Madaan S, et al. High-contrast, synchronous volumetric imaging with selective volume illumination microscopy[J]. Communications Biology, 3, 74(2020).
[69] Wang D P, Xu S, Pant P, et al. Hybrid light-sheet and light-field microscope for high resolution and large volume neuroimaging[J]. Biomedical Optics Express, 10, 6595-6610(2019).
[70] Zhang Z K, Bai L, Cong L, et al. Imaging volumetric dynamics at high speed in mouse and zebrafish brain with confocal light field microscopy[J]. Nature Biotechnology, 39, 74-83(2021).
[71] Schneckenburger H, Richter V. Laser scanning versus wide-field-choosing the appropriate microscope in life sciences[J]. Applied Sciences-Basel, 11, 733(2021).
[72] Luo J T, Li C K, Liu Q L, et al. Super-resolution structured illumination microscopy reconstruction using a least-squares solver[J]. Frontiers in Physics, 8, 118(2020).
[73] Leung B O, Chou K C. Review of super-resolution fluorescence microscopy for biology[J]. Applied Spectroscopy, 65, 967-980(2011).
[74] Kurdzialek S, Demkowicz-Dobrzanski R. Super-resolution optical fluctuation imaging-fundamental estimation theory perspective[J]. Journal of Optics, 23, 075701(2021).
[75] Prakash K, Diederich B, Reichelt S, et al. Super-resolution structured illumination microscopy: past, present and future[J]. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 379, 20200143(2021).
[76] Gustafsson M G L, Shao L, Carlton P M, et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination[J]. Biophysical Journal, 94, 4957-4970(2008).
[77] Fiolka R, Beck M, Stemmer A. Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator[J]. Optics Letters, 33, 1629-1631(2008).
[78] Schwertner M, Booth M J, Wilson T. Specimen-induced distortions in light microscopy[J]. Journal of Microscopy, 228, 97-102(2007).
[79] Lin R Z, Kipreos E T, Zhu J, et al. Subcellular three-dimensional imaging deep through multicellular thick samples by structured illumination microscopy and adaptive optics[J]. Nature Communications, 12, 3148(2021).
[80] Jones S A, Shim S H, He J, et al. Fast, three-dimensional super-resolution imaging of live cells[J]. Nature Methods, 8, 499-505(2011).
[81] Stein S C, Huss A, Hahnel D, et al. Fourier interpolation stochastic optical fluctuation imaging[J]. Optics Express, 23, 16154-16163(2015).
[82] Samanta S, Gong W J, Li W, et al. Organic fluorescent probes for stochastic optical reconstruction microscopy (STORM): Recent highlights[J]. Coordination Chemistry Reviews, 380, 17-34(2019).
[83] Lelek M, Gyparaki M, Melina T, et al. Single-molecule localization microscopy[J]. Nature Reviews Methods Primers, 1, 39(2021).
[84] Huang B, Wang W Q, Bates M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 319, 810-813(2008).
[85] Wang Y H, Jia S, Zhang H F, et al. Blind sparse inpainting reveals cytoskeletal filaments with sub-Nyquist localization[J]. Optica, 4, 1277-1284(2017).
[86] Zeng Z P, Chen X Z, Wang H N, et al. Fast super-resolution imaging with ultra-high labeling density achieved by joint tagging super-resolution optical fluctuation imaging[J]. Scientific Reports, 5, 8359(2015).
[87] GruSsmayer K S, Geissbuehler S, Descloux A, et al. Spectral cross-cumulants for multicolor super-resolved SOFI imaging[J]. Nature Communications, 11, 3023(2020).
[88] Chen X Z, Zeng Z P, Li R Q, et al. Superior performance with sCMOS over EMCCD in super-resolution optical fluctuation imaging[J]. Journal of Biomedical Optics, 21, 066007(2016).
[89] Sharpe J. Optical projection tomography[J]. Annual Review of Biomedical Engineering, 6, 209-228(2004).
[90] Birk U J, Rieckher M, Konstantinides N, et al. Correction for specimen movement and rotation errors for in-vivo optical projection tomography[J]. Biomedical Optics Express, 1, 87-96(2010).
[91] Vinegoni C, Fexon L, Feruglio P F, et al. High throughput transmission optical projection tomography using low cost graphics processing unit[J]. Optics Express, 17, 22320-22332(2009).
[92] Bassi A, Fieramonti L, D'Andrea C, et al. In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography[J]. Journal of Biomedical Optics, 16, 100502(2011).
[93] Arranz A, Dong D, Zhu S P, et al. In-vivo optical tomography of small scattering specimens: time-lapse 3D imaging of the head eversion process in Drosophila melanogaster[J]. Scientific Reports, 4, 7325(2014).
[94] McGinty J, Taylor H B, Chen L, et al. In vivo fluorescence lifetime optical projection tomography[J]. Biomedical Optics Express, 2, 1340-1350(2011).
[95] Juntunen C, Woller I M, Sung Y J. Hyperspectral three-dimensional fluorescence imaging using snapshot Optical Tomography[J]. Sensors, 21, 3652(2021).
[96] Sharpe J, Ahlgren U, Perry P, et al. Optical projection tomography as a tool for 3D microscopy and gene expression studies[J]. Science, 296, 541-545(2002).
[97] Zhu S P, Dong D, Birk U J, et al. Automated motion correction for in vivo optical projection tomography[J]. IEEE Transactions on Medical Imaging, 31, 1358-1371(2012).
[98] Cheddad A, Svensson C, Sharpe J, et al. Image processing assisted algorithms for optical projection tomography[J]. IEEE Transactions on Medical Imaging, 31, 1-15(2012).
[99] Chen L L, McGinty J, Taylor H B, et al. Incorporation of an experimentally determined MTF for spatial frequency filtering and deconvolution during optical projection tomography reconstruction[J]. Optics Express, 20, 7323-7337(2012).
[100] Gong C C, Zeng L, Wang C X. Image reconstruction model for limited-angle CT based on prior image induced relative total variation[J]. Applied Mathematical Modelling, 74, 586-605(2019).
[101] Gong C C, Zeng L. Anisotropic structure property based image reconstruction method for limited-angle computed tomography[J]. Journal of X-Ray Science and Technology, 29, 1079-1102(2021).
[102] Chen Z Q, Jin X, Li L, et al. A limited-angle CT reconstruction method based on anisotropic TV minimization[J]. Physics in Medicine and Biology, 58, 2119-2141(2013).
[103] Wang N, Chen D F, Chen D, et al. Feasibility study of limited-angle reconstruction for in vivo optical projection tomography based on novel sample fixation[J]. IEEE Access, 7, 87681-87691(2019).
[104] Chen X L, Zhu S P, Wang H Y, et al. Accelerated stimulated Raman projection tomography by sparse reconstruction from sparse-view data[J]. IEEE Transactions on Biomedical Engineering, 67, 1293-1302(2020).
[105] Wang H Y, Wang N, Xie H, et al. Two-stage deep learning network-based few-view image reconstruction for parallel-beam projection tomography[J]. Quantitative Imaging in Medicine and Surgery, 12, 2535-2551(2022).
[106] Zhong Q Y, Li A A, Jin R, et al. High-definition imaging using line-illumination modulation microscopy[J]. Nature Methods, 18, 309-315(2021).
[107] Zhu S J, Herraiz S, Yue J Y, et al. 3D NIR-II molecular imaging distinguishes targeted organs with high-performance NIR-II bioconjugates[J]. Advanced Materials, 30, 1705799(2018).
[108] Rodriguez C, Chen A, Rivera J A, et al. An adaptive optics module for deep tissue multiphoton imaging in vivo[J]. Nature Methods, 18, 1259-1264(2021).
[109] Fan J T, Suo J L, Wu J M, et al. Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution[J]. Nature Photonics, 13, 809-816(2019).
[110] Ozeki Y, Umemura W, Otsuka Y, et al. High-speed molecular spectral imaging of tissue with stimulated Raman scattering[J]. Nature Photonics, 6, 844-850(2012).
[111] Chen X L, Zhang C, Lin P, et al. Volumetric chemical imaging by stimulated Raman projection microscopy and tomography[J]. Nature Communications, 8, 15117(2017).
Get Citation
Copy Citation Text
Tianyu Yan, Ying He, Xinyu Wang, Xinyi Xu, Hui Xie, Xueli Chen. Research progress on fast 3D fluorescence microscopic imaging (invited)[J]. Infrared and Laser Engineering, 2022, 51(11): 20220546
Category: Special issue-Fluorescence microscopy: techniques and applications
Received: Aug. 3, 2022
Accepted: --
Published Online: Feb. 9, 2023
The Author Email: