Journal of the Chinese Ceramic Society, Volume. 53, Issue 4, 733(2025)

Role of Carrier Mobility in Decoupling Electron–Phonon Transport Contradiction

BAI Shulin1,2, QIN Bingchao1,2、*, and ZHAO Lidong1,2
Author Affiliations
  • 1School of Materials Science and Engineering, Beihang University, Beijing 100191, China
  • 2Tianmushan Laboratory, Beihang University, Hangzhou 311115, China
  • show less
    References(37)

    [1] [1] QIN B C, KANATZIDIS M G, ZHAO L D. The development and impact of tin selenide on thermoelectrics[J]. Science, 2024, 386(6719): eadp2444.

    [2] [2] QIN B C, ZHAO L D. Moving fast makes for better cooling[J]. Science, 2022, 378(6622): 832–833.

    [3] [3] AI P, TANG S W, WAN D, et al. Synergistic effect of lone-pair electron and atomic distortion in introducing anomalous phonon transport in layered PbXSeF (X= Cu, Ag) compounds with low lattice thermal conductivity[J]. Mater Today Phys, 2024, 48: 101572.

    [4] [4] QIN Y X, QIN B C, WANG D Y, et al. Solid-state cooling: Thermoelectrics[J]. Energy Environ Sci, 2022, 15(11): 4527–4541.

    [5] [5] ZHU T J, LIU Y T, FU C G, et al. Compromise and synergy in high-efficiency thermoelectric materials[J]. Adv Mater, 2017, 29(14): 1605884.

    [6] [6] AI P, TANG S W, BAI S L, et al. Low lattice thermal conductivity induced by rattling-like vibration in Zintl phase Na2CaCdSb2 compound with highZTfrom two-channel model[J]. Chem Eng J, 2024, 499: 156458.

    [8] [8] BAI S L, ZHANG X, ZHAO L D. Rethinking SnSe thermoelectrics from computational materials science[J]. Acc Chem Res, 2023, 56(21): 3065–3075.

    [9] [9] ZHAO L D, DRAVID V P, KANATZIDIS M G. The panoscopic approach to high performance thermoelectrics[J]. Energy Environ Sci, 2014, 7(1): 251–268.

    [10] [10] LI X D, BAI S L, WAN D, et al. Layered PrZnOX (X=P, As) compounds: Promising n-type thermoelectric materials with low lattice thermal conductivity[J]. Chem Eng J, 2024, 481: 148513.

    [11] [11] WAN D, BAI S L, LI X D, et al. Rattling-like behavior and band convergence induced ultra-low lattice thermal conductivity in MgAl2Te4 monolayer[J]. J Materiomics, 2024, 10(5): 1004–1016.

    [12] [12] BAI S L, TANG S W, WU M X, et al. Unravelling the thermoelectric properties and suppression of bipolar effect under strain engineering for the asymmetric Janus SnSSe and PbSSe monolayers[J]. Appl Surf Sci, 2022, 599: 153962.

    [13] [13] UNIVERSITY B, ZHAO L D. Carriers: The less, the faster[J]. MatLab, 2022, 1: 1–3.

    [14] [14] SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nat Mater, 2008, 7(2): 105–114.

    [15] [15] SHARP J W, POON S J, GOLDSMID H J. Boundary scattering and the thermoelectric figure of merit[J]. Phys Stat Sol (a), 2001, 187(2): 507–516.

    [16] [16] LEE K H, KIM S I, LIM J C, et al. Approach to determine the density-of-states effective mass with carrier concentration-dependent seebeck coefficient[J]. Adv Funct Mater, 2022, 32(33): 2203852.

    [18] [18] QIN Y X, QIN B C, HONG T, et al. Grid-plainification enables medium- temperature PbSe thermoelectrics to cool better than Bi2Te3[J]. Science, 2024, 383(6688): 1204–1209.

    [19] [19] LI Y C, BAI S L, WEN Y, et al. Realizing high-efficiency thermoelectric module by suppressing donor-like effect and improving preferred orientation in n-type Bi2(Te, Se)3[J]. Sci Bull, 2024, 69(11): 1728–1737.

    [20] [20] ZHAO L D, HE J Q, BERARDAN D, et al. BiCuSeO oxyselenides: New promising thermoelectric materials[J]. Energy Environ Sci, 2014, 7(9): 2900–2924.

    [21] [21] MAO J, ZHU H T, DING Z W, et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials[J]. Science, 2019, 365(6452): 495–498.

    [22] [22] HE W K, WANG D Y, WU H J, et al. High thermoelectric performance in low-cost SnS0.91Se0.09 crystals[J]. Science, 2019, 365(6460): 1418–1424.

    [23] [23] QIN B C, WANG D Y, LIU X X, et al. Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments[J]. Science, 2021, 373(6554): 556–561.

    [24] [24] LIU D R, WANG D Y, HONG T, et al. Lattice plainification advances highly effective SnSe crystalline thermoelectrics[J]. Science, 2023, 380(6647): 841–846.

    [25] [25] LIU S B, WEN Y, BAI S L, et al. Lattice plainification leads to high thermoelectric performance of P-type PbSe crystals[J]. Adv Mater, 2024, 36(25): e2401828.

    [26] [26] HU Y X, BAI S L, WEN Y, et al. Stepwise optimization of thermoelectric performance in n-type SnS[J]. Adv Funct Mater, 2024: 2414881.

    [29] [29] HONG T, QIN B C, QIN Y X, et al. All-SnTe-based thermoelectric power generation enabled by stepwise optimization of n-type SnTe[J]. J Am Chem Soc, 2024, 146(12): 8727–8736.

    [30] [30] ZHAN S P, BAI S L, QIU Y T, et al. Insight into carrier and phonon transports of PbSnS2 crystals[J]. Adv Mater, 2024, 36(47): e2412967.

    [31] [31] SU L Z, WANG D Y, WANG S N, et al. High thermoelectric performance realized through manipulating layered phonon-electron decoupling[J]. Science, 2022, 375(6587): 1385–1389.

    [32] [32] YU Y, XU X, WANG Y, et al. Tunable quantum gaps to decouple carrier and phonon transport leading to high-performance thermoelectrics[J]. Nat Commun, 2022, 13(1): 5612.

    [33] [33] RAVICH Y I, EFIMOVA B A, TAMARCHENKO V I. Scattering of current carriers and transport phenomena in lead chalcogenides[J]. Phys Status Solidi B: , 1971, 43(1): 11–33.

    [34] [34] GANOSE A M, PARK J, FAGHANINIA A, et al. Efficient calculation of carrier scattering rates from first principles[J]. Nat Commun, 2021, 12(1): 2222.

    [35] [35] TANG S W, AI P, BAI S L, et al. Weak interatomic interactions induced low lattice thermal conductivity in 2D/2D PbSe/SnSe vdW heterostructure[J]. Mater Today Phys, 2024, 43: 101398.

    [36] [36] LI W, CARRETE J, KATCHO N A, et al. ShengBTE: A solver of the Boltzmann transport equation for phonons[J]. Comput Phys Commun, 2014, 185(6): 1747–1758.

    [37] [37] WAN D, BAI S L, LI X D, et al. Anharmonicity and weak bonding-driven extraordinary thermoelectric performance in wrinkled SnSe monolayer with low lattice thermal conductivity[J]. Ceram Int, 2024, 50(6): 9591–9603.

    [38] [38] BAI S L, LIU D R, SHI H N, et al. Revealing the origin of anisotropic rashba spin-orbital splitting and four-phonon scattering in strontium- tin-selenium thermoelectrics[J]. Adv Funct Mater, 2024: 2414288.

    [39] [39] BAI S L, ZHANG J Y, WU M X, et al. Theoretical prediction of thermoelectric performance for layered LaAgOX (X = S, Se) materials in consideration of the four-phonon and multiple carrier scattering processes[J]. Small Methods, 2023, 7(3): e2201368.

    [40] [40] ZHANG M, GAO Z H, LOU Q H, et al. Achieving high carrier mobility and thermal stability in plainified rhombohedral GeTe thermoelectric materials withZT> 2[J]. Adv Funct Mater, 2024, 34(6): 2307864.

    [41] [41] ZHAN S P, BAI S L, QIN B C, et al. High carrier mobility promotes In-plane thermoelectric performance of n-type PbSnS2 crystals[J]. Adv Funct Materials, 2024, 34(46): 2406428.

    Tools

    Get Citation

    Copy Citation Text

    BAI Shulin, QIN Bingchao, ZHAO Lidong. Role of Carrier Mobility in Decoupling Electron–Phonon Transport Contradiction[J]. Journal of the Chinese Ceramic Society, 2025, 53(4): 733

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Nov. 14, 2024

    Accepted: May. 29, 2025

    Published Online: May. 29, 2025

    The Author Email: QIN Bingchao (qinbingchao@buaa.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240718

    Topics