Infrared and Laser Engineering, Volume. 44, Issue 7, 2116(2015)
Sensing mechanism of anatase TiO2 (101) surface adsorption of CO2 molecules
[1] [1] He Y B, Tilocca A, Dulub O, et al. Local ordering and electronic signatures of submonolayer water on anatase TiO2(101)[J]. Nat Mater, 2009, 24: 585-589.
[2] [2] CampbeII C T, Grant A W, Starr D E, et al. Model oxide-supported metal catalysts: Energetics, particle thicknesses, chemisorption and catalytic properties[J]. Top Catal, 2001, 14(1): 43-51.
[3] [3] Diebold U. The surface science of titanium dioxide[J]. Surf Sci Rep, 2003, 48: 53-229.
[4] [4] Ganduglia-Pirovano M V, Hofmann A, Sauer J. Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges[J]. Surf Sci Rep, 2007, 62: 219-270.
[5] [5] Pacchioni G. Modeling doped and defective oxides in catalysis with density functional theory methods: Room for improvements[J]. J Chem Phys, 2008, 128: 182505-182515.
[6] [6] Besenbacher F, Lauritsen J V, Linderoth T R, et al. Atomic-scale surface science phenomena studied by scanning tunneling microscopy[J]. Surf Sci, 2009, 603: 1315-1327.
[7] [7] Regan B O, Gratzel M. A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353: 737-739.
[8] [8] Kwok On Ng, David Vanderbilt. Structure and apparent topography of TiO2(110)surfaces[J]. Phys Rev B, 1997, 56: 10544-10548.
[9] [9] Labat F, Baranek P, Adamo C. Structural and electronic properties of selected rutile and anatase TiO2 surfaces: an ab-initio investigation[J]. Journal of Chemical Theory and Computation, 2008, 4: 341-352.
[10] [10] Vittadini A, Selloni A, Rotzinger F P, et al. Structure and energetics of water adsorbed at TiO2 anatase(101)and(001)surfaces[J]. Phys Rev Lett, 1998, 81: 2954-2957.
[11] [11] Gong X Q, Selloni A, Batzill M, et al. Steps on anatase TiO2(101)[J]. Nat Mater, 2006, 5(8): 665-670.
[12] [12] Herman G S, Dohnalek Z, Ruzycki N, et al. Experimental investigation of the interaction of water and methanol with anatase-TiO2(101)[J]. J Phys Chem B, 2003, 107: 2788-2795.
[13] [13] He Y B, Dulub O, Cheng H Z, et al. Evidence for the predominance of subsurface defects on reduced anatase TiO2(101)[J]. Phys Rev Lett, 2009, 102(10): 106105-106105.
[14] [14] Zhang Z, Yates J T. Unraveling the diffusion of bulk Ti interstitials in rutile TiO2(110)by monitoring their reaction with O adatoms[J]. J A Chem Soc, 2010, 132: 12804-12807.
[15] [15] Yang C T, Nianthrini B, Babu J, et al. CO2 photoreduction key step study: The adsorption of CO2 On TiO2 surfaces in the presence of Co-Catalyst[C]//Annual Meeting, 2012.
[16] [16] Indrakanti V P, Kubicki J D, Schobert H H. Quantum chemical modeling of ground states of CO2 chemisorbed on anatase(001), (101), and(010)TiO2 surfaces[J]. Energy & Fuels, 2008, 22(4): 2611-2618.
[17] [17] Li Zongbao, Xia Wangbo, Chi Bo. First principles investigation of the conversion of N2O and CO to N2 and CO2 on a modified N+Fe/TiO2(101)surface[J]. RSC Adv, 2014, 34(4): 17896-17901.
[18] [18] YangYing, Feng Qing, Wang Weihua, et al. First-principle study on the electronic and optical properties of the anatase TiO2(101)surface[J]. Journal of Semiconductors, 2013(7): 0730041-0930045.
[19] [19] Ma X G, Tang C Q, Huang J Q, et al. First-principle calculation on the geometry and relaxation structure of anatase TiO2(101)surface[J]. Acta Phys Sin, 2006, 55(8): 4208-4212.
[20] [20] Han Y, Liu C J, Ge Q F. Interaction of Pt clusters with the anatase TiO2(101)surface: a first principles study[J]. J Phys Chem B, 2006, 110(14): 7463-7472.
[21] [21] Lu Bing. First Principles Study of Anatase TiO2(101)Surface[D]. Qingdao: Qingdao University of Science & Technology, 2012: 28-29.
[22] [22] Sorescu D C, Al-Saidi W A, Jordan K D. CO2 adsorption on TiO2(101)anatase: A dispersion-corrected density functional theory study[J]. Journal of Chemical Physics, 2011, 135(12): 124701.
[23] [23] Feng Qing, Yue YuanXia, Wang WeiHua, et al. First-principles study on anatase TiO2(101)surface adsorption of NO[J]. Chin Phys B, 2014, 23(4): 0431011-0431018.
[24] [24] Zhu H Q, Feng Qing. Microscopic characteristics mechanism of optical gas sensing material rutile titanium dioxide(110)surface adsorption of CO molecules[J]. Acta Phys Sin, 2014, 63(13): 1331011-1331018.
Get Citation
Copy Citation Text
Yang Ying, Feng Qing. Sensing mechanism of anatase TiO2 (101) surface adsorption of CO2 molecules[J]. Infrared and Laser Engineering, 2015, 44(7): 2116
Category: 光电材料与器件
Received: Nov. 11, 2014
Accepted: Dec. 20, 2014
Published Online: Jan. 26, 2016
The Author Email:
CSTR:32186.14.