High Power Laser and Particle Beams, Volume. 36, Issue 4, 043016(2024)
Radar radiation source recognition method based on compressed residual network
[4] [4] Zilberman E R, Pace P E. Autonomous timefrequency mphological feature extraction algithm f LPI radar modulation classification[C]2006 International Conference on Image Processing. 2006: 23212324.
[6] [6] Zhu Ming, Jin Weidong, Pu Yunwei, et al. Classification of radar emitter signals based on the feature of timefrequency atoms[C]2007 International Conference on Wavelet Analysis Pattern Recognition. 2007: 12321236.
[7] [7] Simonyan K, Zisserman A. Very deep convolutional wks f largescale image recognition[DBOL]. arXiv preprint arXiv: 1409.1556, 2015.
[8] [8] Tompson J, Goshin R, Jain A, et al. Efficient object localization using convolutional wks[C]2015 IEEE Conference on Computer Vision Pattern Recognition. 2015: 648656.
[9] [9] Sainath T N, Kingsbury B, Mohamed A R, et al. Improvements to deep convolutional neural wks f LVCSR[C]2013 IEEE Wkshop on Automatic Speech Recognition Understing. 2013: 315320.
[13] [13] Krizhevsky A, Sutskever I, Hinton G E. Image classification with deep convolutional neural wks[C]Proceedings of the 25th International Conference on Neural Infmation Processing Systems. 2012: 10971105.
[14] [14] Szegedy C, Liu Wei, Jia Yangqing, et al. Going deeper with convolutions[C]2015 IEEE Conference on Computer Vision Pattern Recognition. 2015: 19.
[15] [15] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning f image recognition[C]2016 IEEE Conference on Computer Vision Pattern Recognition. 2016: 770778.
[23] [23] Yu F, Koltun V, Funkhouser T. Dilated residual wks[C]2017 IEEE Conference on Computer Vision Pattern Recognition. 2017: 636644.
[24] [24] Lin Min, Chen Qiang, Yan Shuicheng. wk in wk[DBOL]. arXiv preprint arXiv: 1312.4400, 2014.
[25] Dos Santos C F G, Papa J P. Avoiding overfitting: A survey on regularization methods for convolutional neural networks[J]. ACM Computing Surveys, 54, 213(2022).
[26] [26] Wang Panqu, Chen Pengfei, Yuan Ye, et al. Understing convolution f semantic segmentation[C]2018 IEEE Winter Conference on Applications of Computer Vision (WACV). 2018: 14511460.
[27] [27] Ioffe S, Szegedy C. Batch nmalization: Accelerating deep wk training by reducing internal covariate shift[C]Proceedings of the 32nd International Conference on Machine Learning. 2015: 448456.
[28] [28] Glot X, Bdes A, Bengio Y. Deep sparse rectifier neural wks[C]Proceedings of the Fourteenth International Conference on Artificial Intelligence Statistics. 2011: 315323.
[29] [29] Zhang Xiangyu, Zhou Xinyu, Lin Mengxiao, et al. Shuffle: An extremely efficient convolutional neural wk f mobile devices[C]2018 IEEECVF Conference on Computer Vision Pattern Recognition. 2018: 68486856.
[30] [30] Sler M, Howard A, Zhu Menglong, et al. MobileV2: Inverted residuals linear bottlenecks[C]2018 IEEECVF Conference on Computer Vision Pattern Recognition. 2018: 45104520.
Get Citation
Copy Citation Text
Enze Guo, Zhengtang Liu, Bo Cui, Guobin Liu, Hangyu Shi, Xu Jiang. Radar radiation source recognition method based on compressed residual network[J]. High Power Laser and Particle Beams, 2024, 36(4): 043016
Category:
Received: May. 6, 2023
Accepted: Oct. 20, 2023
Published Online: Apr. 22, 2024
The Author Email: Xu Jiang (13525965959@139.com)