High Power Laser and Particle Beams, Volume. 36, Issue 4, 043016(2024)

Radar radiation source recognition method based on compressed residual network

Enze Guo1, Zhengtang Liu1, Bo Cui1, Guobin Liu1, Hangyu Shi2, and Xu Jiang1、*
Author Affiliations
  • 1Unit 63893 of the PLA, Luoyang 471003, China
  • 2Unit 63896 of the PLA, Luoyang 471003, China
  • show less
    References(30)

    [4] [4] Zilberman E R, Pace P E. Autonomous timefrequency mphological feature extraction algithm f LPI radar modulation classification[C]2006 International Conference on Image Processing. 2006: 23212324.

    [6] [6] Zhu Ming, Jin Weidong, Pu Yunwei, et al. Classification of radar emitter signals based on the feature of timefrequency atoms[C]2007 International Conference on Wavelet Analysis Pattern Recognition. 2007: 12321236.

    [7] [7] Simonyan K, Zisserman A. Very deep convolutional wks f largescale image recognition[DBOL]. arXiv preprint arXiv: 1409.1556, 2015.

    [8] [8] Tompson J, Goshin R, Jain A, et al. Efficient object localization using convolutional wks[C]2015 IEEE Conference on Computer Vision Pattern Recognition. 2015: 648656.

    [9] [9] Sainath T N, Kingsbury B, Mohamed A R, et al. Improvements to deep convolutional neural wks f LVCSR[C]2013 IEEE Wkshop on Automatic Speech Recognition Understing. 2013: 315320.

    [13] [13] Krizhevsky A, Sutskever I, Hinton G E. Image classification with deep convolutional neural wks[C]Proceedings of the 25th International Conference on Neural Infmation Processing Systems. 2012: 10971105.

    [14] [14] Szegedy C, Liu Wei, Jia Yangqing, et al. Going deeper with convolutions[C]2015 IEEE Conference on Computer Vision Pattern Recognition. 2015: 19.

    [15] [15] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning f image recognition[C]2016 IEEE Conference on Computer Vision Pattern Recognition. 2016: 770778.

    [23] [23] Yu F, Koltun V, Funkhouser T. Dilated residual wks[C]2017 IEEE Conference on Computer Vision Pattern Recognition. 2017: 636644.

    [24] [24] Lin Min, Chen Qiang, Yan Shuicheng. wk in wk[DBOL]. arXiv preprint arXiv: 1312.4400, 2014.

    [25] Dos Santos C F G, Papa J P. Avoiding overfitting: A survey on regularization methods for convolutional neural networks[J]. ACM Computing Surveys, 54, 213(2022).

    [26] [26] Wang Panqu, Chen Pengfei, Yuan Ye, et al. Understing convolution f semantic segmentation[C]2018 IEEE Winter Conference on Applications of Computer Vision (WACV). 2018: 14511460.

    [27] [27] Ioffe S, Szegedy C. Batch nmalization: Accelerating deep wk training by reducing internal covariate shift[C]Proceedings of the 32nd International Conference on Machine Learning. 2015: 448456.

    [28] [28] Glot X, Bdes A, Bengio Y. Deep sparse rectifier neural wks[C]Proceedings of the Fourteenth International Conference on Artificial Intelligence Statistics. 2011: 315323.

    [29] [29] Zhang Xiangyu, Zhou Xinyu, Lin Mengxiao, et al. Shuffle: An extremely efficient convolutional neural wk f mobile devices[C]2018 IEEECVF Conference on Computer Vision Pattern Recognition. 2018: 68486856.

    [30] [30] Sler M, Howard A, Zhu Menglong, et al. MobileV2: Inverted residuals linear bottlenecks[C]2018 IEEECVF Conference on Computer Vision Pattern Recognition. 2018: 45104520.

    Tools

    Get Citation

    Copy Citation Text

    Enze Guo, Zhengtang Liu, Bo Cui, Guobin Liu, Hangyu Shi, Xu Jiang. Radar radiation source recognition method based on compressed residual network[J]. High Power Laser and Particle Beams, 2024, 36(4): 043016

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 6, 2023

    Accepted: Oct. 20, 2023

    Published Online: Apr. 22, 2024

    The Author Email: Xu Jiang (13525965959@139.com)

    DOI:10.11884/HPLPB202436.230119

    Topics