PhotoniX, Volume. 3, Issue 1, 28(2022)

Planar metasurface-based concentrators for solar energy harvest: from theory to engineering

Cheng Zhang1...2, Yujie Zhan2, Yongxue Qiu2, Leilei Xu2 and Jianguo Guan2,* |Show fewer author(s)
Author Affiliations
  • 1Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan 430070, China
  • 2State Key Lab of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
  • show less
    References(250)

    [1] [1] Goel A, Manik G. Solar thermal system—an insight into parabolic trough solar collector and its modeling. Renewable Energy Systems: Elsevier; 2021. p. 309–37.

    [2] [2] Dudley B. BP statistical review of world energy. BP Stat Rev London, UK. 2018;2018(6):00116.

    [3] [3] by fuel type-Exajoules, C. bp Statistical Review of World Energy. 2006

    [5] [5] Da Rosa AV, Ordóñez JC. Fundamentals of renewable energy processes: Academic; 2021.

    [6] [6] World Energy Council. World energy resources report; 2016.

    [8] [8] Kamran M, Fazal MR. Fundamentals of renewable energy systems: Academic; 2021.

    [20] [20] Blanco M. Advances in concentrating solar thermal research and technology: Woodhead Publishing; 2016.

    [24] [24] Alam T, Saini R, Saini J. Heat transfer enhancement due to V-shaped perforated blocks in a solar air heater duct. In: Applied mechanics and materials; 2014. p. 125–9. Trans Tech Publ.

    [28] [28] Garg HP, Mullick S, Bhargava VK. Solar thermal energy storage: Springer Science & Business Media; 2012.

    [36] [36] Rasul M. Clean energy for sustainable development: comparisons and contrasts of new approaches: Academic; 2016.

    [41] [41] Stine W, Diver R. A compendium of solar dish Stirling technology. Report SAND 937026. Albuquerque: Sandia National Laboratories; 1994.

    [42] [42] Kearney A. Solar thermal electricity 2025. Clean electricity on demand: Atractive STE cost stabilize energy production; 2010.

    [55] [55] Yoon G, Tanaka T, Zentgraf T, et al. Recent progress on metasurfaces: applications and fabrication. J Phys D Appl Phys. 2021;54(38):383002.

    [94] [94] Lee S, Jo Y, Yoo D, et al. Tomographic near-eye displays. Nat Commun. 2019;10(1):1–10.

    [107] [107] Wang Y, Zheng M, Ruan Q, et al. Stepwise-nanocavity-assisted transmissive color filter array microprints. Research. 2018;2018:8109054.

    [123] [123] Pancharatnam S. Generalized theory of interference and its applications. In: Proceedings of the Indian Academy of Sciences-section a, 1956. Abstract 6: Springer. p. 398–417.

    [149] [149] Guo L, Xu S, Wan R, et al. Design of aluminum nitride metalens in the ultraviolet spectrum. J Nanophoton. 2018;12(4):043513.

    [151] [151] Chen WT, Zhu AY, Sisler J, et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat Commun. 2019;10(1):1–7.

    [173] [173] Zhang L, Ding J, Zheng H, et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nat Commun. 2018;9(1):1–9.

    [176] [176] Majka M, Majka TM. Healthy light source; 2013.

    [189] [189] Ali F, Aksu S. A hybrid broadband metalens operating at ultraviolet frequencies. Sci Rep. 2021;11(1):1–8.

    [194] [194] Kenney M, Grant J, Hao D, et al. Large area metasurface lenses in the NIR region. In: Modeling aspects in optical metrology VII: SPIE; 2019. p. 56–66.

    [198] [198] Zhao D, Lin Z, Zhu W, et al. Recent advances in ultraviolet nanophotonics: from plasmonics and metamaterials to metasurfaces. Nanophotonics. 2021;10(9):2283–2308.

    [201] [201] Wang S, Wu PC, Su V-C, et al. Broadband achromatic optical metasurface devices. Nat Commun. 2017;8(1):1–9.

    [203] [203] Wang Y, Chen Q, Yang W, et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat Commun. 2021;12(1):1–7.

    [209] [209] Monticone F, Valagiannopoulos CA, Alù A. Parity-time symmetric nonlocal metasurfaces: all-angle negative refraction and volumetric imaging. Phys Rev X. 2016;6(4):041018.

    [224] [224] Xu Z, Dong Y, Fu YH, et al. Embedded dielectric metasurface based subtractive color filter on a 300mm glass wafer. In: 2019 conference on lasers and electro-optics (CLEO): IEEE; 2019. p. 1–2.

    [229] [229] He Q, Sun S, Zhou L. Tunable/reconfigurable metasurfaces: physics and applications. Research. 2019;2019:1849272.

    [236] [236] Zhu M, Abdollahramezani S, Hemmatyar O, et al. Linear and nonlinear focusing using reconfigurable all-dielectric Metalens based on phase-change materials. In: Laser science: Optical Society of America; 2020. p. JW6B.

    [247] [247] Guo M, Qu Z, Min F, et al. Advanced unconventional techniques for sub-100 nm nanopatterning. InfoMat. 2022;4(8):e12323.

    Tools

    Get Citation

    Copy Citation Text

    Cheng Zhang, Yujie Zhan, Yongxue Qiu, Leilei Xu, Jianguo Guan. Planar metasurface-based concentrators for solar energy harvest: from theory to engineering[J]. PhotoniX, 2022, 3(1): 28

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Aug. 8, 2022

    Accepted: Nov. 8, 2022

    Published Online: Jul. 10, 2023

    The Author Email: Jianguo Guan (guanjg@whut.edu.cn)

    DOI:10.1186/s43074-022-00074-0

    Topics