Infrared and Laser Engineering, Volume. 51, Issue 8, 20220215(2022)
Deep learning-based image reconstruction through turbid medium (invited)
[1] Ishimaru A. Wave propagation and scattering in random media and rough surfaces[J]. Proc IEEE, 79, 1359-1366(1991).
[2] Li Y, Lu H, Li K C, et al. Non-uniform de-scattering and de-blurring of underwater images[J]. Mobile Networks and Applications, 23, 352-362(2018).
[3] Goodman J W, Huntley Jr W H, Jackson D W, et al. Wavefront-reconstruction imaging through random media[J]. Applied Physics Letters, 8, 311-313(1966).
[4] [4] Goodman J W. Speckle Phenomena in Optics: They Applications[M]. Cao Q Z, Chen J B, Transl. Beijing: Science Press, 2009: 137.
[5] [5] Gan Yu, Liu Honglin, Gao Jingjing, et al. Effect of sampling manners on distal field reconstruction through a multimode fiber [JOL]. Infrared Laser Engineering, (20220304) [20220513]. http:kns.cnki.kcmsdetail12.1261.tn.20220310.1508.002.html. (in Chinese)
[6] [6] Fan Yihui, Jin Xin, Deng Rujia, et al. Depthrectified statistical scattering modeling f deepsea video descattering [JOL]. Infrared Laser Engineering, (20220114)[20220513]. http:kns.cnki.kcmsdetail12.1261.tn.20220113.1911.012.html. (in Chinese)
[7] Lu T F, Zhang K N, Wu Z J, et al. Propagation properties of elliptical vortex beams in turbulent ocean[J]. Chinese Optics, 13, 323-332(2020).
[8] Vinu R V, Chen Z, Singh R K, et al. Ghost diffraction holographic microscopy[J]. Optica, 7, 1697-1704(2020).
[9] Vellekoop I M, Lagendijk A, Mosk A P. Exploiting disorder for perfect focusing[J]. Nature Photonics, 4, 320-322(2010).
[10] Freund I. Looking through walls and around corners[J]. Physica A: Statistical Mechanics and its Applications, 168, 49-65(1990).
[11] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 32, 2309-2311(2007).
[12] Zheng S S, Yang W Q, Situ G H. Application of computational optical imaging in scattering[J]. Infrared and Laser Engineering, 48, 0603005(2019).
[13] Han S S, Hu C Y. Review, current status and prospect of researches on information optical imaging research (Invited)[J]. Infrared and Laser Engineering, 51, 20220017(2022).
[14] Ye Meitu, Liang Jin, Li Leigang, et al. Discrete matching of weakly-correlated speckle images in oblique field of view[J]. Optical Precision Engineering, 29, 2235(2021).
[15] Lu D X, Fang W H, Li Y Y, et al. Principle and research progress of optical coherence tomography[J]. Chinese Optics, 13, 2020-0037(2020).
[16] Lai X, Li Q, Chen Z, et al. Reconstructing images of two adjacent objects passing through scattering medium via deep learning[J]. Optics Express, 29, 43280-43291(2021).
[17] Chen L, Singh R K, Vinu R V, et al. A wavefront division multiplexing holographic scheme and its application in looking through diffuser[J]. New Journal of Physics, 23, 113034(2021).
[18] Shao Xiaopeng, Su Yun, Liu Jinpeng, et al. Connotation and system of computational imaging (Invited)[J]. Acta Photonica Sinica, 50, 0511001(2021).
[19] Chen L, Chen Z, Singh R K, et al. Increasing field of view and signal to noise ratio in the quantitative phase imaging with phase shifting holography based on the Hanbury Brown-Twiss approach[J]. Optics and Lasers in Engineering, 148, 106771(2022).
[20] Li F, Xu T, Nguyen D H T, et al. Label-free evaluation of angiogenic sprouting in microengineered devices using ultrahigh-resolution optical coherence microscopy[J]. Journal of Biomedical Optics, 19, 016006(2014).
[21] Liu Q Y, Tang Y G, Ouyang N, et al. High-speed and stable endoscopic optical coherence tomography system[J]. Optical Precision Engineering, 29, 2340-2348(2021).
[22] Mosk A P, Lagendijk A, Lerosey G, et al. Controlling waves in space and time for imaging and focusing in complex media[J]. Nature Photonics, 6, 283-292(2012).
[23] Vellekoop I M. Feedback-based wavefront shaping[J]. Optics Express, 23, 12189-12206(2015).
[24] Ma C, Di J, Zhang Y, et al. Reconstruction of structured laser beams through a multimode fiber based on digital optical phase conjugation[J]. Optics Letters, 43, 3333-3336(2018).
[25] Fan W, Chen Z, Yakovlev V V, et al. High-fidelity image reconstruction through multimode fiber via polarization‐enhanced parametric speckle imaging[J]. Laser & Photonics Reviews, 15, 2000376(2021).
[26] Popoff S M, Lerosey G, Fink M, et al. Controlling light through optical disordered media: Transmission matrix approach[J]. New Journal of Physics, 13, 123021(2011).
[27] Xie X S, Liu Y K, Liang H W, et al. Speckle correlation imaging: from point spread function to light field plenoptics[J]. Acta optica Sinica, 40, 0111004(2020).
[28] Zheng S, Wang H, Dong S, et al. Incoherent imaging through highly nonstatic and optically thick turbid media based on neural network[J]. Photonics Research, 9, B220-B228(2021).
[29] Sun Y, Shi J, Sun L, et al. Image reconstruction through dynamic scattering media based on deep learning[J]. Optics Express, 27, 16032-16046(2019).
[30] Conkey D B, Caravaca-Aguirre A M, Piestun R. High-speed scattering medium characterization with application to focusing light through turbid media[J]. Optics Express, 20, 1733-1740(2012).
[31] Nixon M, Katz O, Small E, et al. Real-time wavefront shaping through scattering media by all-optical feedback[J]. Nature Photonics, 7, 919-924(2013).
[32] Ma L, Li H, Meng F, et al. Learning efficient binary codes from high-level feature representations for multilabel image retrieval[J]. IEEE Transactions on Multimedia, 19, 2545-2560(2017).
[33] Ma L, Li H, Meng F, et al. Discriminative deep metric learning for asymmetric discrete hashing[J]. Neurocomputing, 380, 115-124(2020).
[34] Ma L, Li H, Meng F, et al. Global and local semantics-preserving based deep hashing for cross-modal retrieval[J]. Neurocomputing, 312, 49-62(2018).
[35] Ma L, Li X, Shi Y, et al. Learning discrete class-specific prototypes for deep semantic hashing[J]. Neurocomputing, 443, 85-95(2021).
[36] Ma L, Li X, Shi Y, et al. Correlation filtering-based hashing for fine-grained image retrieval[J]. IEEE Signal Processing Letters, 27, 2129-2133(2020).
[37] [37] Isola P, Zhu J Y, Zhou T H, et al. Imagetoimage translation with conditional adversarial wks[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2017.
[38] [38] Grother P J. NIST special database 19. NIST hprinted fms acters database[DB]. Gaithersburg MD, USA: National Institute of Stards Technology, 1995.
[39] [39] Ronneberger O, Fischer P, Brox T. U: Convolutional wks f biomedical image segmentation[C]International Conference on Medical Image Computing Computerassisted Intervention, 2017.
[40] [40] Li C, W M. Precomputed realtime texture synthesis with markovian generative adversarial wks[C]European Conference on Computer Vision, 2016.
[41] [41] Diederik Kingma, Jimmy Ba. Adam: A method f stochastic optimization[C]The 3rd International Conference f Learning Representations, 2015.
[42] Wang Z, Bovik A C. Mean squared error: Love it or leave it? A new look at signal fidelity measures[J]. IEEE Signal Processing Magazine, 26, 98-117(2009).
[43] Asuero A G, Sayago A, González G. The correlation coefficient: An overview[J]. Critical Reviews in Analytical Chemistry, 36, 41-59(2006).
[44] [44] Jongejan J, Rowley H, Kawashima T, et al. The quick, draw! dataset [DBOL]. (2017515)[20210302]. https:github.comgooglecreativelabquickdrawdataset.
Get Citation
Copy Citation Text
Zhiyuan Wang, Xuetian Lai, Huichuan Lin, Fuchang Chen, Jun Zeng, Ziyang Chen, Jixiong Pu. Deep learning-based image reconstruction through turbid medium (invited)[J]. Infrared and Laser Engineering, 2022, 51(8): 20220215
Category: Special issue——Scattering imaging and non-line-of-sight imaging
Received: Mar. 22, 2022
Accepted: --
Published Online: Jan. 9, 2023
The Author Email: Fuchang Chen (chenfuchang@mnnu.edu.cn), Ziyang Chen (ziyang@hqu.edu.cn)