Laser & Infrared, Volume. 54, Issue 2, 281(2024)
Improved real-time infrared small target detection based on YOLOv5s
[2] [2] Zhao M J, Li W, Hu J, et al. Single-frame infrared small-target detection: asurvey[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10: 87-119.
[4] [4] Wu Y F, Pan F, An Q C, et al. Infrared target detection based on deep iearning[C]//2021 40th Chinese Control Conference (CCC), Shanghai, China, 2021: 81175-8180.
[5] [5] Redmon J, Farhadi A. YOLOv3: an incremental improvement[J]. arXiv: 2018, 21804.02767.
[6] [6] Rezatofighi H, Tsoi N, Gwak J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 658-666.
[7] [7] Zheng L, Peng Y P, Ye Z C, et al. Infrared small UAV target detection algorithm based on enhanced adaptive feature pyramid networks[J]. IEEE Access, 2022, 10: 115988-115995.
[8] [8] Zhao H X, Liang Z R, Cai D H, et al. An improved method for infrared vehicle and pedestrian detection based on YOLOv5s[C]//2022 International Conference on Machine Learning, Cloud computing and Intelligent Mining (MLCCIM), Xiamen, China, 2022: 377-383.
[9] [9] Huang G, Liu S C, Maaten L, et al. CondenseNet: an efficient DenseNet using learnd group convolutions[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 2752-2761.
[10] [10] Jocher G. YOLOv5[EB/OL] Https://github.com/ultralytics/yolov5, 2020.
[11] [11] Hu J, Shen L, Albanie S, et al. Squeeze and excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42: 2011-2023.
[12] [12] Wang K, Liew J H, Zou Y, et al. Panet: few-shot image semantic segmentation with prototype alignment[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9197-9206.
[14] [14] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017: 5998-6008.
[15] [15] Zhu X K, Lyu S C, Wang X, et al. TPh-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2021: 2778-2788.
[16] [16] Xin X L, Pan F, Wang J C, et al. SwinT-YOLOv5s: improved YOLOv5s for vehicle-mounted infrared target detection[C]//2022 41st Chinese Control Conference (CCC), Hefei, China, 2022: 7236-7331.
[17] [17] Liu F C, Gao C Q, C F, et al. Infrared small-dim target detection with transformer under complex backgrounds[J]. arXiv: 2021, 2109.14379.
[18] [18] Nneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
[19] [19] Raja Sunkara, Luo T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]//European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), 2022: 443-459.
[20] [20] Sanghyun Woo, Jongchan Park, Joon-Yong Lee, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[21] [21] Dai Y M, Wu Y Q, Zhou F, et al. Asymmetric contextual modulation for infrared small target detection[C]//IEEE Winter Conference on Applications of Computer Vision (WACV), 2021: 949-958.
[22] [22] Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.
[23] [23] He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[24] [24] Lin T Y, Dollr P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[25] [25] Yu F, Koltun V, Funkhouser T. Dilated residual networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 636-644.
[26] [26] Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
[27] [27] Wang C Y, Bochkovskiy A, Liao H Y M. Scaled-YOLOv4: scaling cross stage partial network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13029-13038.
[28] [28] Cai Z, Vasconcelos N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162.
[29] [29] Wang C Y, Alexey B, Liao M H. YOLOv7: trainable bag of freebies sets new state of art for real time object detectors[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2023: 1-15.
Get Citation
Copy Citation Text
GU Yu, ZHANG Hong-yu, PENG Dong-liang. Improved real-time infrared small target detection based on YOLOv5s[J]. Laser & Infrared, 2024, 54(2): 281
Category:
Received: Mar. 30, 2023
Accepted: Jun. 4, 2025
Published Online: Jun. 4, 2025
The Author Email: