NUCLEAR TECHNIQUES, Volume. 46, Issue 4, 040009(2023)

Review of QCD phase diagram analysis using effective field theories

Yilun DU1、*, Chengming LI2, Chao SHI3, Shusheng XU4, Yan YAN5, and Zheng ZHANG6
Author Affiliations
  • 1Shandong Institute of Advanced Technology, Jinan 250100, China
  • 2School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
  • 3Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • 4School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
  • 5School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
  • 6Department of Physics, Nanjing University, Nanjing 210093, China
  • show less
    References(200)

    [1] Shuryak E. What RHIC experiments and theory tell us about properties of quark-gluon plasma?[J]. Nuclear Physics A, 750, 64-83(2005).

    [2] Niida T, Miake Y. Signatures of QGP at RHIC and the LHC[J]. AAPPS Bulletin, 31, 12(2021).

    [3] Bazavov A, Brambilla N, Ding H T et al. Polyakov loop in 2+1 flavor QCD from low to high temperatures[J]. Physical Review D, 93, 114502(2016).

    [4] Brodsky S J, Roberts C D, Shrock R et al. Confinement contains condensates[J]. Physical Review C, 85, 065202(2012).

    [5] Masayuki A, Koichi Y. Chiral restoration at finite density and temperature[J]. Nuclear Physics A, 504, 668-684(1989).

    [6] Ackermann K H, Adams N, Adler C et al. Elliptic flow in Au+Au collisions at sNN=130 GeV[J]. Physical Review Letters, 86, 402-407(2001).

    [7] Aamodt K, Abelev B, Quintana A A et al. Elliptic flow of charged particles in Pb-Pb collisions at sNN= 2.76 TeV[J]. Physical Review Letters, 105, 252302(2010).

    [8] Aamodt K, Abelev B, Quintana A A et al. Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at sNN=2.76 TeV[J]. Physical Review Letters, 107, 032301(2011).

    [9] Eskola K J. Nearly perfect quark-gluon fluid[J]. Nature Physics, 15, 1111-1112(2019).

    [10] Rebhan A, Steineder D. Violation of the holographic viscosity bound in a strongly coupled anisotropic plasma[J]. Physical Review Letters, 108, 021601(2012).

    [11] Skokov V V, Illarionov A Y, Toneev V D. Estimate of the magnetic field strength in heavy-ion collisions[J]. International Journal of Modern Physics A, 24, 5925-5932(2009).

    [12] Adamczyk L, Adkins J K, Agakishiev G et al. Global Λ hyperon polarization in nuclear collisions[J]. Nature, 548, 62-65(2017).

    [13] Aoki Y, Fodor Z, Katz S D et al. The QCD transition temperature: results with physical masses in the continuum limit[J]. Physics Letters B, 643, 46-54(2006).

    [14] Aoki Y, Borsányi S, Dürr S et al. The QCD transition temperature: results with physical masses in the continuum limit II[J]. Journal of High Energy Physics, 2009, 88(2009).

    [15] Bhattacharya T, Buchoff M I, Christ N H et al. QCD phase transition with chiral quarks and physical quark masses[J]. Physical Review Letters, 113, 082001(2014).

    [16] He M, Li J F, Sun W M et al. Quark number susceptibility around the critical end point[J]. Physical Review D, 79, 036001(2008).

    [17] Fischer C S, Luecker J, Mueller J A. Chiral and deconfinement phase transitions of two-flavour QCD at finite temperature and chemical potential[J]. Physics Letters B, 702, 438-441(2011).

    [18] Shi C, Wang Y L, Jiang Y et al. Locate QCD critical end point in a continuum model study[J]. Journal of High Energy Physics, 2014, 14(2014).

    [19] Gao F, Liu Y X. QCD phase transitions via a refined truncation of Dyson-Schwinger equations[J]. Physical Review D, 94, 076009(2016).

    [20] Du Y L, Cui Z F, Xia Y H et al. Discussions on the crossover property within the Nambu-Jona-Lasinio model[J]. Physical Review D, 88, 114019(2013).

    [21] Du Y L, Lu Y, Xu S S et al. Susceptibilities and critical exponents within the Nambu-Jona-Lasinio model[J]. International Journal of Modern Physics A, 30, 1550199(2015).

    [22] Costa P, Ruivo M C, de Sousa C A. Thermodynamics and critical behavior in the Nambu-Jona-Lasinio model of QCD[J]. Physical Review D, 77, 096001(2008).

    [23] Fukushima K. Phase diagrams in the three-flavor Nambu-Jona-Lasinio model with the Polyakov loop[J]. Physical Review D, 77, 114028(2008).

    [24] Fu W J, Zhang Z, Liu Y X. 2+1 flavor Polyakov-Nambu-Jona-Lasinio model at finite temperature and nonzero chemical potential[J]. Physical Review D, 77, 014006(2008).

    [25] Costa P, de Sousa C A, Ruivo M C et al. The QCD critical end point in the PNJL model[J]. EPL (Europhysics Letters), 86, 31001(2009).

    [26] Fu W J, Pawlowski J M, Rennecke F. QCD phase structure at finite temperature and density[J]. Physical Review D, 101, 054032(2020).

    [27] Adhikari P, Andersen J O. QCD at finite isospin density: Chiral perturbation theory confronts lattice data[J]. Physics Letters B, 804, 135352(2020).

    [28] Adhikari P, Andersen J O, Kneschke P. Two-flavor chiral perturbation theory at nonzero isospin: pion condensation at zero temperature[J]. The European Physical Journal C, 79, 874(2019).

    [29] Schaefer B J, Pawlowski J M, Wambach J. Phase structure of the Polyakov-quark-meson model[J]. Physical Review D, 76, 074023(2007).

    [30] Nickel D. Inhomogeneous phases in the Nambu-Jona-Lasinio and quark-meson model[J]. Physical Review D, 80, 074025(2009).

    [31] Skokov V, Friman B, Redlich K. Quark number fluctuations in the Polyakov loop-extended quark-meson model at finite baryon density[J]. Physical Review C, 83, 054904(2011).

    [32] Luo X F, Xu N. Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview[J]. Nuclear Science and Techniques, 28, 112(2017).

    [33] Luo X F. Energy dependence of moments of net-proton and net-charge multiplicity distributions at STAR[C].

    [34] Luo X F, Wang Q, Xu N et al[M]. Properties of QCD matter at high baryon density(2022).

    [35] Belavin A A, Polyakov A M, Schwartz A S et al. Pseudoparticle solutions of the Yang-Mills equations[J]. Physics Letters B, 59, 85(1975).

    [36] Adler S L. Axial-vector vertex in spinor electrodynamics[J]. Physical Review, 177, 2426-2438(1969).

    [37] Bell J S, Jackiw R. A PCAC puzzle: π0→γγ in theσ-model[J]. Nuovo Cimento A, 60, 47-61(1969).

    [38] Christ N H. Conservation-law violation at high energy by anomalies[J]. Physical Review D, 21, 1591-1602(1980).

    [39] Smilga A V. Anomaly mechanism at finite temperature[J]. Physical Review D, Particles and Fields, 45, 1378-1394(1992).

    [40] Yang L K, Luo X F, Segovia J et al. A brief review of chiral chemical potential and its physical effects[J]. Symmetry, 12, 2095(2020).

    [41] Ruggieri M, Peng G X, Chernodub M. Chiral relaxation time at the crossover of quantum chromodynamics[J]. Physical Review D, 94, 054011(2016).

    [42] Ruggieri M, Peng G X. Quark matter in a parallel electric and magnetic field background: Chiral phase transition and equilibration of chiral density[J]. Physical Review D, 93, 094021(2016).

    [43] Ruggieri M, Chernodub M N, Lu Z Y. Topological susceptibility, divergent chiral density, and phase diagram of chirally imbalanced QCD medium at finite temperature[J]. Physical Review D, 102, 014031(2020).

    [44] Bass S A, Belkacem M, Bleicher M et al. Microscopic models for ultrarelativistic heavy ion collisions[J]. Progress in Particle and Nuclear Physics, 41, 255-369(1998).

    [45] Palhares L F, Fraga E S, Kodama T. Chiral transition in a finite system and possible use of finite-size scaling in relativistic heavy ion collisions[J]. Journal of Physics G: Nuclear and Particle Physics, 38, 085101(2011).

    [46] Braun J, Klein B, Schaefer B J. On the phase structure of QCD in a finite volume[J]. Physics Letters B, 713, 216-223(2012).

    [47] Skokov V, Friman B, Redlich K. Volume fluctuations and higher-order cumulants of the net baryon number[J]. Physical Review C, 88, 034911(2013).

    [48] Bhattacharyya A, Deb P, Ghosh S K et al. Thermodynamic properties of strongly interacting matter in a finite volume using the Polyakov-Nambu-Jona-Lasinio model[J]. Physical Review D, 87, 054009(2013).

    [49] Bhattacharyya A, Ray R, Sur S. Fluctuation of strongly interacting matter in the Polyakov-Nambu-Jona-Lasinio model in a finite volume[J]. Physical Review D, 91, 051501(2015).

    [50] Klein B. Modeling finite-volume effects and chiral symmetry breaking in two-flavor QCD thermodynamics[J]. Physics Reports, 1, 707-708(2017).

    [51] Tripolt R A, Braun J, Klein B et al. Effect of fluctuations on the QCD critical point in a finite volume[J]. Physical Review D, 90, 054012(2014).

    [52] Juričić A, Schaefer B J. Chiral thermodynamics in a finite box[J]. Acta Physica Polonica B Proceedings Supplement, 10, 609(2017).

    [53] Watts A L, Andersson N, Chakrabarty D et al. Colloquium: Measuring the neutron star equation of state using X-ray timing[J]. Reviews of Modern Physics, 88, 021001(2016).

    [54] Jiang Y, Liao J F. Pairing phase transitions of matter under rotation[J]. Physical Review Letters, 117, 192302(2016).

    [55] Chernodub M N, Gongyo S. Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics[J]. Journal of High Energy Physics, 2017, 136(2017).

    [56] Ebihara S, Fukushima K, Mameda K. Boundary effects and gapped dispersion in rotating Fermionic matter[J]. Physics Letters B, 764, 94-99(2017).

    [57] Zhang Z, Shi C, He X T et al. Chiral phase transition inside a rotating cylinder within the Nambu-Jona-Lasinio model[J]. Physical Review D, 102, 114023(2020).

    [58] Wang L X, Jiang Y, He L Y et al. Chiral vortices and pseudoscalar condensation due to rotation[J]. Physical Review D, 100, 114009(2019).

    [59] Sun F, Huang A P. Properties of strange quark matter under strong rotation[J]. Physical Review D, 106, 076007(2022).

    [60] Nishimura K, Yamamoto N. Topological term, QCD anomaly, and the η' chiral soliton lattice in rotating baryonic matter[J]. Journal of High Energy Physics, 2020, 196(2020).

    [61] Fujimoto Y, Fukushima K, Hidaka Y. Deconfining phase boundary of rapidly rotating hot and dense matter and analysis of moment of inertia[J]. Physics Letters B, 816, 136184(2021).

    [62] Chernodub M N. Inhomogeneous confining-deconfining phases in rotating plasmas[J]. Physical Review D, 103, 054027(2021).

    [63] Chen X, Zhang L, Li D N et al. Gluodynamics and deconfinement phase transition under rotation from holography[J]. Journal of High Energy Physics, 2021, 132(2021).

    [64] Braguta V V, Kotov A Y, Kuznedelev D D et al. Study of the confinement/deconfinement phase transition in rotating lattice SU(3) gluodynamics[J]. JETP Letters, 112, 6-12(2020).

    [65] Braguta V V, Kotov A Y, Kuznedelev D D et al. Influence of relativistic rotation on the confinement-deconfinement transition in gluodynamics[J]. Physical Review D, 103, 094515(2021).

    [66] Chernodub M N, Gongyo S. Effects of rotation and boundaries on chiral symmetry breaking of relativistic fermions[J]. Physical Review D, 95, 096006(2017).

    [67] Braga N R F, Faulhaber L F, Junqueira O C. Confinement-deconfinement temperature for a rotating quark-gluon plasma[J]. Physical Review D, 105, 106003(2022).

    [68] Chen H L, Fukushima K, Huang X G et al. Analogy between rotation and density for Dirac fermions in a magnetic field[J]. Physical Review D, 93, 104052(2016).

    [69] Liu Y Z, Zahed I. Pion condensation by rotation in a magnetic field[J]. Physical Review Letters, 120, 032001(2018).

    [70] Cao G Q, He L Y. Rotation induced charged pion condensation in a strong magnetic field: a Nambu-Jona-Lasino model study[J]. Physical Review D, 100, 094015(2019).

    [71] Sadooghi N, Tabatabaee Mehr S M A, Taghinavaz F. Inverse magnetorotational catalysis and the phase diagram of a rotating hot and magnetized quark matter[J]. Physical Review D, 104, 116022(2021).

    [72] Cao G Q. Charged rho superconductor in the presence of magnetic field and rotation[J]. The European Physical Journal C, 81, 148(2021).

    [73] Son D T, Surówka P. Hydrodynamics with triangle anomalies[J]. Physical Review Letters, 103, 191601(2009).

    [74] Kharzeev D E, Son D T. Testing the chiral magnetic and chiral vortical effects in heavy ion collisions[J]. Physical Review Letters, 106, 062301(2011).

    [75] Landsteiner K, Megías E, Melgar L et al. Holographic gravitational anomaly and chiral vortical effect[J]. Journal of High Energy Physics, 2011, 121(2011).

    [76] Landsteiner K, Megías E, Peña-Benítez F. Frequency dependence of the chiral vortical effect[J]. Physical Review D, 90, 065026(2014).

    [77] Kharzeev D E, Liao J, Voloshin S A et al. Chiral magnetic and vortical effects in high-energy nuclear collisions—a status report[J]. Progress in Particle and Nuclear Physics, 88, 1-28(2016).

    [78] Abramchuk R, Khaidukov Z V, Zubkov M A. Anatomy of the chiral vortical effect[J]. Physical Review D, 98, 076013(2018).

    [79] Zubkov M A. Hall effect in the presence of rotation[J]. EPL (Europhysics Letters), 121, 47001(2018).

    [80] Flachi A, Fukushima K. Chiral vortical effect with finite rotation, temperature, and curvature[J]. Physical Review D, 98, 096011(2018).

    [81] Lin S, Yang L X. Magneto-vortical effect in strong magnetic field[J]. Journal of High Energy Physics, 2021, 54(2021).

    [82] Buballa M. NJL-model analysis of dense quark matter[J]. Physics Reports, 407, 205-376(2005).

    [83] Oertel M, Hempel M, Klähn T et al. Equations of state for supernovae and compact stars[J]. Reviews of Modern Physics, 89, 015007(2017).

    [84] Haensel P, Potekhin A Y, Yakovlev D G[M]. Neutron stars(2007).

    [85] LI Ang, HU Jinniu, BAO Shishao et al. Dense matter equation of state: neutron star and strange star[J]. Nuclear Physics Review, 36, 1-36(2019).

    [86] Antoniadis J, Freire P C C, Wex N et al. A massive pulsar in a compact relativistic binary[J]. Science, 340, 448, 1233232(2013).

    [87] Demorest P B, Pennucci T, Ransom S M et al. A two-solar-mass neutron star measured using Shapiro delay[J]. Nature, 467, 1081-1083(2010).

    [88] Kaplan D L, Bhalerao V B, van Kerkwijk M H et al. A metal-rich low-gravity companion to a massive millisecond pulsar[J]. The Astrophysical Journal Letters, 765, 158(2013).

    [89] Smits R, Lorimer D R, Kramer M et al. Pulsar science with the five hundred metre Aperture Spherical Telescope[J]. Astronomy & Astrophysics, 505, 919-926(2009).

    [90] Gendreau K C, Arzoumanian Z, Okajima T. The Neutron star Interior Composition ExploreR (NICER): an explorer mission of opportunity for soft X-ray timing spectroscopy[C], 8443, 322-329(2012).

    [91] Campana R, Feroci M, Del Monte E et al. The LOFT (large observatory for X-ray timing) background simulations[C], 8443, 1636-1644(2012).

    [92] Raaijmakers G, Riley T E, Watts A L et al. A NICER view of PSR J0030+0451: implications for the dense matter equation of state[J]. The Astrophysical Journal Letters, 887, L22(2019).

    [93] Riley T E, Watts A L, Bogdanov S et al. A NICER view of PSR J0030+0451: millisecond pulsar parameter estimation[J]. The Astrophysical Journal Letters, 887, L21(2019).

    [94] Bogdanov S, Guillot S, Ray P S et al. Constraining the neutron star mass-radius relation and dense matter equation of state with NICER. I. the millisecond pulsar X-ray data set[J]. The Astrophysical Journal Letters, 887, L25(2019).

    [95] Guillot S, Kerr M, Ray P S et al. NICER X-ray observations of seven nearby rotation-powered millisecond pulsars[J]. The Astrophysical Journal Letters, 887, L27(2019).

    [96] Miller M C, Lamb F K, Dittmann A J et al. PSR J0030+0451 mass and radius from NICER data and implications for the properties of neutron star matter[J]. The Astrophysical Journal Letters, 887, L24(2019).

    [97] Bogdanov S, Lamb F K, Mahmoodifar S et al. Constraining the neutron star mass-radius relation and dense matter equation of state with NICER. II. emission from hot spots on a rapidly rotating neutron star[J]. The Astrophysical Journal Letters, 887, L26(2019).

    [98] Abbott B P, Abbott R, Abbott T D et al. GW170817: observation of gravitational waves from a binary neutron star inspiral[J]. Physical Review Letters, 119, 161101(2017).

    [99] Abbott B P, Abbott R, Abbott T D et al. Properties of the binary neutron star merger GW170817[J]. Physical Review X, 9, 011001(2019).

    [100] Nambu Y, Jona-Lasinio G. Dynamical model of elementary particles based on an analogy with superconductivity. I[J]. Physical Review, 122, 345-358(1961).

    [101] Nambu Y, Jona-Lasinio G. Dynamical model of elementary particles based on an analogy with superconductivity. II[J]. Physical Review, 124, 246-254(1961).

    [102] Klevansky S P. The Nambu-Jona-Lasinio model of quantum chromodynamics[J]. Reviews of Modern Physics, 64, 649-708(1992).

    [103] Hatsuda T, Kunihiro T. QCD phenomenology based on a chiral effective Lagrangian[J]. Physics Reports, 247, 221-367(1994).

    [104] Hatsuda T, Kunihiro T. Soft modes associated with chiral symmetry breaking: the use of a QCD-motivated effective interaction[J]. Progress of Theoretical Physics, 74, 765-781(1985).

    [105] Wang F, Cao Y K, Zong H S. Novel self-consistent mean field approximation and its application in strong interaction phase transitions[J]. Chinese Physics C, 43, 084102(2019).

    [106] Roberts C D, Schmidt S M. Dyson-Schwinger equations: Density, temperature and continuum strong QCD[J]. Progress in Particle and Nuclear Physics, 45, S1–S103(2000).

    [107] Fischer C S. QCD at finite temperature and chemical potential from Dyson-Schwinger equations[J]. Progress in Particle and Nuclear Physics, 105, 1-60(2019).

    [108] Maris P, Roberts C D. π- and K-meson Bethe-Salpeter amplitudes[J]. Physical Review C, 56, 3369-3383(1997).

    [109] Maris P, Tandy P C. Bethe-Salpeter study of vector meson masses and decay constants[J]. Physical Review C, 60, 055214(1999).

    [110] Qin S X, Chang L, Chen H et al. Phase diagram and critical end point for strongly interacting quarks[J]. Physical Review Letters, 106, 172301(2011).

    [111] Fischer C S, Luecker J. Propagators and phase structure of Nf=2 and Nf=2+1 QCD[J]. Physics Letters B, 718, 1036-1043(2013).

    [112] Fischer C S, Luecker J, Welzbacher C A. Phase structure of three and four flavor QCD[J]. Physical Review D, 90, 034022(2014).

    [113] Shi C, Du Y L, Xu S S et al. Continuum study of the QCD phase diagram through an OPE-modified gluon propagator[J]. Physical Review D, 93, 036006(2016).

    [114] Wang B, Wang Y L, Cui Z F et al. Effect of the chiral chemical potential on the position of the critical endpoint[J]. Physical Review D, 91, 034017(2015).

    [115] Fischer C S, Grüter B, Alkofer R. Solving coupled Dyson-Schwinger equations on a compact manifold[J]. Annals of Physics, 321, 1918-1938(2006).

    [116] Fan W K, Luo X F, Zong H S. Mapping the QCD phase diagram with susceptibilities of conserved charges within Nambu-Jona-Lasinio model[J]. International Journal of Modern Physics A, 32, 1750061(2017).

    [117] Fan W K, Luo X F, Zong H S. Probing the QCD phase structure with higher order baryon number susceptibilities within the NJL model[J]. Chinese Physics C, 43, 033103(2019).

    [118] Fan W K, Luo X F, Zong H S. Second to tenth order susceptibilities of conserved charges within a modified Nambu-Jona-Lasinio model[J]. Chinese Physics C, 43, 054109(2019).

    [119] Shao G Y, Tang Z D, Gao X Y et al. Baryon number fluctuations and the phase structure in the PNJL model[J]. The European Physical Journal C, 78, 138(2018).

    [120] Ferreira M, Costa P, Providência C. Presence of a critical endpoint in the QCD phase diagram from the net-baryon number fluctuations[J]. Physical Review D, 98, 034006(2018).

    [121] Li Z B, Xu K, Wang X Y et al. The kurtosis of net baryon number fluctuations from a realistic Polyakov-Nambu-Jona-Lasinio model along the experimental freeze-out line[J]. The European Physical Journal C, 79, 245(2019).

    [122] Isserstedt P, Buballa M, Fischer C S et al. Baryon number fluctuations in the QCD phase diagram from Dyson-Schwinger equations[J]. Physical Review D, 100, 074011(2019).

    [123] Zhao A M, Cui Z F, Jiang Y et al. Nonlinear susceptibilities under the framework of Dyson-Schwinger equations[J]. Physical Review D, 90, 114031(2014).

    [124] Xin X Y, Qin S X, Liu Y X. Quark number fluctuations at finite temperature and finite chemical potential via the Dyson-Schwinger equation approach[J]. Physical Review D, 90, 076006(2014).

    [125] Fu W J, Luo X F, Pawlowski J M et al. Hyper-order baryon number fluctuations at finite temperature and density[J]. Physical Review D, 104, 094047(2021).

    [126] Zhao A M, Luo X F, Zong H S. Baryon number fluctuations in quasi-particle model[J]. The European Physical Journal C, 77, 207(2017).

    [127] Almási G A, Pisarski R D, Skokov V V. Volume dependence of baryon number cumulants and their ratios[J]. Physical Review D, 95, 056015(2017).

    [128] Aggarwal M M, Ahammed Z, Alakhverdyants A V et al. Higher moments of net proton multiplicity distributions at RHIC[J]. Physical Review Letters, 105, 022302(2010).

    [129] Adamczyk L, Adkins J K, Agakishiev G et al. Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC[J]. Physical Review Letters, 113, 092301(2014).

    [130] Adam J, Adamczyk L, Adams J R et al. Beam energy dependence of net-Λ fluctuations measured by the STAR experiment at RHIC[J]. Physical Review C, 102, 024903(2020).

    [131] Adamczyk L, Adams J R, Adkins J K et al. Collision energy dependence of moments of net-kaon multiplicity distributions at RHIC[J]. Physics Letters B, 785, 551-560(2018).

    [132] Kitazawa M, Asakawa M. Revealing baryon number fluctuations from proton number fluctuations in relativistic heavy ion collisions[J]. Physical Review C, 85, 021901(2012).

    [133] Kitazawa M, Asakawa M. Relation between baryon number fluctuations and experimentally observed proton number fluctuations in relativistic heavy ion collisions[J]. Physical Review C, 86, 024904(2012).

    [134] Hatta Y, Stephanov M A. Proton-number fluctuation as a signal of the QCD critical end point[J]. Physical Review Letters, 91, 102003(2003).

    [135] Athanasiou C, Rajagopal K, Stephanov M. Using higher moments of fluctuations and their ratios in the search for the QCD critical point[J]. Physical Review D, 82, 074008(2010).

    [136] Borsanyi S, Fodor Z, Katz S D et al. Freeze-out parameters from electric charge and baryon number fluctuations: is there consistency?[J]. Physical Review Letters, 113, 052301(2014).

    [137] Borsányi S, Fodor Z, Katz S D et al. Freeze-out parameters: lattice meets experiment[J]. Physical Review Letters, 111, 062005(2013).

    [138] Cleymans J, Oeschler H, Redlich K et al. Status of chemical freeze-out[J]. Journal of Physics G: Nuclear and Particle Physics, 32, S165–S169(2006).

    [139] Begun V V, Vovchenko V, Gorenstein M I. Updates to the p+p and A+A chemical freeze-out lines from the new experimental data[J]. Journal of Physics: Conference Series, 779, 012080(2017).

    [140] Fukushima K, Kharzeev D E, Warringa H J. Chiral magnetic effect[J]. Physical Review D, 78, 074033(2008).

    [141] Fukushima K, Ruggieri M, Gatto R. Chiral magnetic effect in the Polyakov-Nambu-Jona-Lasinio model[J]. Physical Review D, 81, 114031(2010).

    [142] Chernodub M N, Nedelin A S. Phase diagram of chirally imbalanced QCD matter[J]. Physical Review D, 83, 105008(2011).

    [143] Ruggieri M. Critical end point of quantum chromodynamics detected by chirally imbalanced quark matter[J]. Physical Review D, 84, 014011(2011).

    [144] Yamamoto A. Chiral magnetic effect in lattice QCD with a chiral chemical potential[J]. Physical Review Letters, 107, 031601(2011).

    [145] Wang B, Wang Y L, Cui Z F et al. Effect of the chiral chemical potential on the position of the critical endpoint[J]. Physical Review D, 91, 034017(2015).

    [146] Xu S S, Cui Z F, Wang B et al. Chiral phase transition with a chiral chemical potential in the framework of Dyson-Schwinger equations[J]. Physical Review D, 91, 056003(2015).

    [147] Shi C, He X T, Jia W B et al. Chiral transition and the chiral charge density of the hot and dense QCD matter[J]. Journal of High Energy Physics, 2020, 122(2020).

    [148] Blaschke D, Burau G, Kalinovsky Y L et al. Finite T meson correlations and quark deconfinement[J]. International Journal of Modern Physics A, 16, 2267-2291(2001).

    [149] Maris P, Tandy P C. Bethe-Salpeter study of vector meson masses and decay constants[J]. Physical Review C, 60, 055214(1999).

    [150] Shi C, Du Y L, Xu S S et al. Continuum study of the QCD phase diagram through an OPE-modified gluon propagator[J]. Physical Review D, 93, 036006(2016).

    [151] Cui Z F, Cloët I C, Lu Y et al. Critical end point in the presence of a chiral chemical potential[J]. Physical Review D, 94, 071503(2016).

    [152] Yu L, Liu H, Huang M. Effect of the chiral chemical potential on the chiral phase transition in the NJL model with different regularization schemes[J]. Physical Review D, 94, 014026(2016).

    [153] Weller R D, Romatschke P. One fluid to rule them all: viscous hydrodynamic description of event-by-event central p+p, p+Pb and Pb+Pb collisions at s=5.02 TeV[J]. Physics Letters B, 774, 351-356(2017).

    [154] Aidala C, Akiba Y, Alfred M et al. Creating small circular, elliptical, and triangular droplets of quark-gluon plasma[J]. Nature Physics, 15, 214-220(2019).

    [155] Shi C, Jia W B, Sun A et al. Chiral crossover transition in a finite volume[J]. Chinese Physics C, 42, 023101(2018).

    [156] Shi C, Xia Y H, Jia W B et al. Chiral phase diagram of strongly interacting matter at finite volume[J]. Science China Physics, Mechanics & Astronomy, 61, 082021(2018).

    [157] Xu Y Z, Shi C, He X T et al. Chiral crossover transition from the Dyson-Schwinger equations in a sphere[J]. Physical Review D, 102, 114011(2020).

    [158] Bernhardt J, Fischer C S, Isserstedt P et al. Critical endpoint of QCD in a finite volume[J]. Physical Review D, 104, 074035(2021).

    [160] Almási G A, Pisarski R D, Skokov V V. Volume dependence of baryon number cumulants and their ratios[J]. Physical Review D, 95, 056015(2017).

    [161] Cheng P, Luo X F, Ping J L et al. Finite volume effects on the quarkonium dissociation temperature in an impenetrable QGP sphere[J]. Physical Review D, 100, 014027(2019).

    [162] Zhao Y P, Yin P L, Yu Z H et al. Finite volume effects on chiral phase transition and pseudoscalar mesons properties from the Polyakov-Nambu-Jona-Lasinio model[J]. Nuclear Physics B, 952, 114919(2020).

    [163] Duffy G, Ottewill A C. Rotating quantum thermal distribution[J]. Physical Review D, 67, 044002(2003).

    [164] Ambruş V E, Winstanley E. Rotating fermions inside a cylindrical boundary[J]. Physical Review D, 93, 104014(2016).

    [165] Zhang Z, Shi C, Luo X F et al. Rotating fermions inside a spherical boundary[J]. Physical Review D, 102, 065002(2020).

    [166] Fulling S A. Nonuniqueness of canonical field quantization in Riemannian space-time[J]. Physical Review D, 7, 2850-2862(1973).

    [167] Unruh W G. Notes on black-hole evaporation[J]. Physical Review D, 14, 870-892(1976).

    [168] Cook G B, Shapiro S L, Teukolsky S A. Rapidly rotating neutron stars in general relativity: realistic equations of state[J]. The Astrophysical Journal Letters, 424, 823(1994).

    [169] Skokov V V, Illarionov A Y, Toneev V D. Estimate of the magnetic field strength in heavy-ion collisions[J]. International Journal of Modern Physics A, 24, 5925-5932(2009).

    [170] Voronyuk V, Toneev V D, Cassing W et al. Electromagnetic field evolution in relativistic heavy-ion collisions[J]. Physical Review C, 83, 054911(2011).

    [171] Deng W T, Huang X G. Event-by-event generation of electromagnetic fields in heavy-ion collisions[J]. Physical Review C, 85, 044907(2012).

    [172] Duncan R C, Thompson C. Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts[J]. The Astrophysical Journal Letters, 392, L9(1992).

    [173] Cao G Q. Recent progresses on QCD phases in a strong magnetic field: views from Nambu-Jona-Lasinio model[J]. The European Physical Journal A, 57, 264(2021).

    [174] McInnes B. Inverse magnetic/shear catalysis[J]. Nuclear Physics B, 906, 40-59(2016).

    [175] Fortin M, Providência C, Raduta A R et al. Neutron star radii and crusts: uncertainties and unified equations of state[J]. Physical Review C, 94, 035804(2016).

    [176] Akmal A, Pandharipande V R, Ravenhall D G. Equation of state of nucleon matter and neutron star structure[J]. Physical Review C, 58, 1804-1828(1998).

    [177] Douchin F, Haensel P. A unified equation of state of dense matter and neutron star structure[J]. Astronomy & Astrophysics, 380, 151-167(2001).

    [178] Masuda K, Hatsuda T, Takatsuka T. Hadron-quark crossover and massive hybrid stars[J]. Progress of Theoretical and Experimental Physics, 2013, 073D01(2013).

    [179] Li C M, Yan Y, Geng J J et al. Constraints on the hybrid equation of state with a crossover hadron-quark phase transition in the light of GW170817[J]. Physical Review D, 98, 083013(2018).

    [180] Itoh N. Hydrostatic equilibrium of hypothetical quark stars[J]. Progress of Theoretical Physics, 44, 291-292(1970).

    [181] Terazawa H. Super-hypernuclei in the quark-shell model[J]. Journal of the Physical Society of Japan, 58, 1989(1979).

    [182] Bodmer A R. Collapsed nuclei[J]. Physical Review D, 4, 1601-1606(1971).

    [183] Witten E. Cosmic separation of phases[J]. Physical Review D, 30, 272-285(1984).

    [184] Li B L, Cui Z F, Yu Z H et al. Structures of the strange quark stars within a quasiparticle model[J]. Physical Review D, 99, 043001(2019).

    [185] Wang Q Y, Zhao T, Zong H S. On the stability of two-flavor and three-flavor quark matter in quark stars within the framework of NJL model[J]. Modern Physics Letters A, 35, 2050321(2020).

    [186] Li B L, Yan Y, Ping J L. Strange quark mass dependence of strange quark star properties[J]. The European Physical Journal C, 81, 921(2021).

    [187] Li B L, Yan Y, Ping J L. Tidal deformabilities and radii of strange quark stars[J]. Physical Review D, 104, 043002(2021).

    [188] Li B L, Yan Y, Ping J L. Hadron-quark crossover and hybrid stars with quark core[J]. Journal of Physics G: Nuclear and Particle Physics, 49, 045201(2022).

    [189] Xu S S. Phase structures of neutral dense quark matter and application to strange stars[J]. Chinese Physics C, 46, 014105(2022).

    [190] Li B L, Yan Y, Kang G Z et al. Properties of hybrid stars with hadron-quark crossover[J]. Modern Physics Letters A, 37, 2250074(2022).

    [191] Holdom B, Ren J, Zhang C. Quark matter may not be strange[J]. Physical Review Letters, 120, 222001(2018).

    [192] Yang L K, Luo X F, Zong H S. QCD phase diagram in chiral imbalance with self-consistent mean field approximation[J]. Physical Review D, 100, 094012(2019).

    [193] Yu Z X, Zhao T, Zong H S. Self-consistent mean field approximation and application in three-flavor NJL model[J]. Chinese Physics C, 44, 074104(2020).

    [194] Su L Q, Shi C, Huang Y F et al. Hybrid stars can be self-bound[J]. Physical Review D, 103, 094037(2021).

    [195] Wang Q W, Shi C, Zong H S. Nonstrange quark stars from an NJL model with proper-time regularization[J]. Physical Review D, 100, 123003(2019).

    [196] Zhao T, Zheng W, Wang F et al. Do current astronomical observations exclude the existence of nonstrange quark stars?[J]. Physical Review D, 100, 043018(2019).

    [197] Capano C D, Tews I, Brown S M et al. Stringent constraints on neutron-star radii from multimessenger observations and nuclear theory[J]. Nature Astronomy, 4, 625-632(2020).

    [198] Yuan W L, Li A, Miao Z Q et al. Interacting ud and uds quark matter at finite densities and quark stars[J]. Physical Review D, 105, 123004(2022).

    [200] Geng J J, Li B, Huang Y F. Repeating fast radio bursts from collapses of the crust of a strange star[J]. The Innovation, 2, 100152(2021).

    Tools

    Get Citation

    Copy Citation Text

    Yilun DU, Chengming LI, Chao SHI, Shusheng XU, Yan YAN, Zheng ZHANG. Review of QCD phase diagram analysis using effective field theories[J]. NUCLEAR TECHNIQUES, 2023, 46(4): 040009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jan. 13, 2023

    Accepted: --

    Published Online: Apr. 27, 2023

    The Author Email: DU Yilun (yilun.du@iat.cn)

    DOI:10.11889/j.0253-3219.2023.hjs.46.040009

    Topics