Opto-Electronic Engineering, Volume. 51, Issue 11, 240171-1(2024)

Improved YOLOv8 algorithm for detecting cracks in roadbed slopes

Xiaofu Niu1... He Huang1,2, Hongmin Zhang1,* and Tiefeng Xu1 |Show fewer author(s)
Author Affiliations
  • 1School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, China
  • 2China Merchants Chongqing Transportation Research and Design Institute Limited, Chongqing 400067, China
  • show less
    Figures & Tables(20)
    Improved YOLOv8 network structure
    Comparison of RepViT block design
    Structure diagram of SE attention mechanism
    Ghost module structure diagram
    C2f-GD module structure diagram
    Comparison of normalization methods
    L-GNHead module structure diagram
    SIoU loss function calculation diagram
    Example of slope crack images
    Comparison of thermal maps with different modules
    Comparison of thermal maps with C2f-GD module
    Comparison of different convergence curves
    Comparison of slope crack detection results. (a) YOLOv8n; (b) Ours
    Comparison results of training on RDD2022 dataset. (a) Loss convergence curve; (b) mAP50 curve
    Comparison of detection results of different algorithms on RDD2022 dataset
    • Table 1. Results of ablation experiments

      View table
      View in Article

      Table 1. Results of ablation experiments

      ModelC2f-RVBC2f-GDL-GNHeadSIoUmAP50/%mAP50-95/%Params/MGFLOPsFPS
      YOLOv8n85.143.23.008.196.6
      YOLOv8n_186.544.62.647.086.8
      YOLOv8n_286.444.22.637.193.8
      YOLOv8n_386.143.92.366.5103.1
      YOLOv8n_485.743.43.008.197.9
      YOLOv8n_587.946.01.955.699.4
      YOLOv8n_687.243.12.246.1106.9
      YOLOv8n_787.645.31.604.5104.0
      YOLOv8n_888.445.71.604.5114.7
    • Table 2. Comparison of the experimental results

      View table
      View in Article

      Table 2. Comparison of the experimental results

      ModelmAP50/%mAP50-95/%Params/MGFLOPsFPS
      SSD69.234.663.82124.596.6
      Faster-RCNN70.437.8137.42371.418.7
      RT-DETR-L[32]81.639.828.44100.632.8
      YOLOv5n82.441.32.507.1110.1
      YOLOv7tiny81.539.56.1212.4109.8
      YOLOv8n85.143.23.008.196.6
      YOLOv9s[33]87.944.67.3326.864.7
      文献[34]88.744.989.115.4
      文献[35]87.845.533.4
      Ours88.445.71.604.5114.7
    • Table 3. Comparison of SE at different positions

      View table
      View in Article

      Table 3. Comparison of SE at different positions

      P/%R/%mAP50/%Params/M
      YOLOv8n90.283.085.13.00
      89.582.984.92.64
      88.581.782.12.64
      88.481.185.82.64
      Ours91.083.586.52.64
    • Table 4. Comparison results of different loss functions

      View table
      View in Article

      Table 4. Comparison results of different loss functions

      LossP/%R/%mAP50/%Params/M
      CIoU90.283.085.13.0
      EIoU89.582.683.83.0
      WIoU89.984.184.23.0
      SIoU89.984.285.73.0
    • Table 5. Comparison of the experimental results on RDD2022 dataset

      View table
      View in Article

      Table 5. Comparison of the experimental results on RDD2022 dataset

      ModelmAP50/%mAP50-95/%Params/MGFLOPsFPS
      Faster-RCNN63.134.5137.42371.418.2
      RT-DETR-L[32]73.140.428.44100.632.4
      YOLOv5n75.944.22.507.1107.8
      YOLOv7tiny75.544.16.1212.4108.5
      YOLOv8n76.3 44.93.008.195.8
      YOLOv9s[33]77.944.67.3326.865.2
      文献[34]78.445.189.115.4
      文献[35]78.144.533.4
      Ours78.944.71.604.5111.6
    Tools

    Get Citation

    Copy Citation Text

    Xiaofu Niu, He Huang, Hongmin Zhang, Tiefeng Xu. Improved YOLOv8 algorithm for detecting cracks in roadbed slopes[J]. Opto-Electronic Engineering, 2024, 51(11): 240171-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Jul. 20, 2024

    Accepted: Oct. 24, 2024

    Published Online: Jan. 24, 2025

    The Author Email: Hongmin Zhang (张红民)

    DOI:10.12086/oee.2024.240171

    Topics