Acta Laser Biology Sinica, Volume. 30, Issue 2, 105(2021)
Research Progress of Optogenetics in the Treatment of Neurological Diseases
[1] [1] CRICK F H. Thinking about the brain[J]. Scientific American, 1979, 241(3): 219-232.
[2] [2] ZEMELMAN B V, LEE G A, NG M, et al. Selective photostimulation of genetically chARGed neurons[J]. Neuron, 2002, 33(1): 15-22.
[3] [3] BOYDEN E S, ZHANG F, BAMBERG E, et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nature Neuroscience, 2005, 8(9): 1263-1268.
[4] [4] DEISSEROTH K, FENG G, MAJEWSKA A K, et al. Next-generation optical technologies for illuminating genetically targeted brain circuits[J]. Journal of Neuroscience, 2006, 26(41): 10380-10386.
[5] [5] DUEBEL J, MARAZOVA K, SAHEL J A. Optogenetics[J]. Current Opinion in Ophthalmology, 2015, 26(3): 226-232.
[6] [6] ZHANG F, VIEROCK J, YIZHAR O, et al. The microbial opsin family of optogenetic tools[J]. Cell, 2011, 147(7): 1446-1457.
[7] [7] OESTERHELT D, STOECKENIUS W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium[J]. Nature: New Biology, 1971, 233(39): 149-152.
[8] [8] OESTERHELT D, STOECKENIUS W. Functions of a new photoreceptor membrane[J]. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70(10): 2853-2857.
[9] [9] MATSUNO-YAGI A, MUKOHATA Y. Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation[J]. Biochemical and Biophysical Research Communications, 1977, 78(1): 237-243.
[10] [10] SCHOBERT B, LANYI J K. Halorhodopsin is a light-driven chloride pump[J]. The Journal of Biological Chemistry, 1982, 257(17): 10306-10313.
[11] [11] NAGEL G, OLLIG D, FUHRMANN M, et al. Channelrhodopsin-1: a light-gated proton channel in green algae[J]. Science, 2002, 296(5577): 2395-2398.
[12] [12] TYE K M, DEISSEROTH K. Optogenetic investigation of neural circuits underlying brain disease in animal models[J]. Nature Reviews: Neuroscience, 2012, 13(4): 251-266.
[13] [13] NAGEL G, SZELLAS T, HUHN W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(24): 13940-13945.
[14] [14] GOVORUNOVA E G, SINESHCHEKOV O A, LI H, et al. Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis[J]. Journal of Biological Chemistry, 2013, 288(41): 29911-29922.
[15] [15] WEN L, WANG H, TANIMOTO S, et al. Opto-current-clamp actuation of cortical neurons using a strategically designed channelrhodopsin[J]. PLoS One, 2010, 5(9): e12893.
[16] [16] YIZHAR O, FENNO L E, PRIGGE M, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction[J]. Nature, 2011, 477(7363): 171-178.
[17] [17] LIN J Y, KNUTSEN P M, MULLER A, et al. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation[J]. Nature Neuroscience, 2013, 16(10): 1499-1508.
[18] [18] KLAPOETKE N C, MURATA Y, KIM S S, et al. Independent optical excitation of distinct neural populations[J]. Nat Methods, 2014, 11(3): 338-346.
[19] [19] WANG H, SUGIYAMA Y, HIKIMA T, et al. Molecular determinants differentiating photocurrent properties of two channelrhodopsins from chlamydomonas[J]. Journal of Biological Chemistry, 2009, 284(9): 5685-5696.
[20] [20] LIN J Y, LIN M Z, STEINBACH P, et al. Characterization of engineered channelrhodopsin variants with improved properties and kinetics[J]. Biophysical Journal, 2009, 96(5): 1803-1814.
[21] [21] GUZIK A, BUSHNELL C. Stroke epidemiology and risk factor management[J]. Continuum (Minneap Minn), 2017, 23(1): 15-39.
[22] [22] FLOEL A, COHEN L G. Recovery of function in humans: cortical stimulation and pharmacological treatments after stroke[J]. Neurobiology of Disease, 2010, 37(2): 243-251.
[23] [23] LU C, WU X, MA H, et al. Optogenetic stimulation enhanced neuronal plasticities in motor recovery after ischemic stroke[J]. Neural Plasticity, 2019, 2019: 5271573.
[24] [24] SHAH A M, ISHIZAKA S, CHENG M Y, et al. Optogenetic neuronal stimulation of the lateral cerebellar nucleus promotes persistent functional recovery after stroke[J]. Scientific Reports, 2017, 7: 46612.
[25] [25] TYSNES O B, STORSTEIN A. Epidemiology of Parkinson’s disease[J]. Journal?of?Neural?Transmission (Vienna), 2017, 124(8): 901-905.
[26] [26] MILLER D B, O’CALLAGHAN J P. Biomarkers of Parkinson’s disease: present and future[J]. Metabolism: Clinical and Experimental, 2015, 64(3): S40-S46.
[27] [27] KRAVITZ A V, FREEZE B S, PARKER P R, et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry[J]. Nature, 2010, 466(7306): 622-626.
[28] [28] BASS C E, GRINEVICH V P, VANCE Z B, et al. Optogenetic control of striatal dopamine release in rats[J]. Journal of Neurochemistry, 2010, 114(5): 1344-1352.
[29] [29] HALLIDAY G M, DEL TREDICI K, BRAAK H. Critical appraisal of brain pathology staging related to presymptomatic and symptomatic cases of sporadic Parkinson’s disease[J]. Journal of Neural Transmission Supplementum, 2006(70): 99-103.
[30] [30] BRAAK H, DEL TREDICI K, RüB U, et al. Staging of brain pathology related to sporadic Parkinson’s disease[J]. Neurobiology of Aging, 2003, 24(2): 197-211.
[31] [31] VAZEY E M, ASTON-JONES G. The emerging role of norepinephrine in cognitive dysfunctions of Parkinson’s disease[J]. Frontiers in Behavioral Neuroscience, 2012, 6: 48.
[32] [32] THIJS R D, SURGES R, O’BRIEN T J, et al. Epilepsy in adults[J]. Lancet, 2019, 393(10172): 689-701.
[33] [33] YE H, KASZUBA S. Inhibitory or excitatory? Optogenetic interrogation of the functional roles of GABAergic interneurons in epileptogenesis[J]. Journal of Biomedical Science, 2017, 24(1): 93.
[34] [34] MOOSA A N V. Antiepileptic drug treatment of epilepsy in children[J]. Continuum (Minneap Minn), 2019, 25(2): 381-407.
[35] [35] ZHAO M, ALLEVA R, MA H, et al. Optogenetic tools for modulating and probing the epileptic network[J]. Epilepsy Research, 2015, 116: 15-26.
[36] [36] TONNESEN J, SORENSEN A T, DEISSEROTH K, et al. Optogenetic control of epileptiform activity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(29): 12162-12167.
[37] [37] SUKHOTINSKY I, CHAN A M, AHMED O J, et al. Optogenetic delay of status epilepticus onset in an in vivo rodent epilepsy model[J]. PLoS One, 2013, 8(4): e62013.
[38] [38] SELVARAJ P, SLEIGH J W, FREEMAN W J, et al. Open loop optogenetic control of simulated cortical epileptiform activity[J]. Journal of Computational Neuroscience, 2014, 36(3): 515-525.
[39] [39] HERNANDEZ V H, GEHRT A, REUTER K, et al. Optogenetic stimulation of the auditory pathway[J]. Journal of Clinical Investigation, 2014, 124(3): 1114-1129.
[40] [40] STRA?áK Z, KOUSAL B, ARDAN T, et al. Innovative strategies for treating retinaldiseases[J]. Ceska a Slovenska Oftalmologie, 2020, 75(6): 287-295.
[41] [41] BISELLI T, LANGE S S, SABLOTTNY L, et al. Optogenetic and chemogenetic insights into the neurocircuitry of depression-like behaviour: a systematic review[J]. European Journal of Neuroscience, 2021, 53(1): 9-38.
[42] [42] JARRIN S, FINN D P. Optogenetics and its application in pain and anxiety research[J]. Neuroscience and Biobehavioral Reviews, 2019, 105: 200-211.
Get Citation
Copy Citation Text
WANG Yunxi, XUE Qingping, FENG Xixi, XING Guogang, XU Fan. Research Progress of Optogenetics in the Treatment of Neurological Diseases[J]. Acta Laser Biology Sinica, 2021, 30(2): 105
Category:
Received: Sep. 13, 2020
Accepted: --
Published Online: Sep. 1, 2021
The Author Email: Fan XU (xufan@cmc.edu.cn)