Optical Technique, Volume. 50, Issue 4, 508(2024)

Research on surface-enhanced fluorescence characteristics of optical fiber SPR

ZHAO Jingtao, ZHANG Zhenxing, SUN Xiang, KONG Mei, and ZHANG Rong*
Author Affiliations
  • [in Chinese]
  • show less
    References(27)

    [1] [1] Fort E, Gresillon S. Surface enhanced fluorescence[J]. Journal of Physics D: Applied Physics,2007,41(1):013001.

    [2] [2] Geddes, Chris D. Metal-enhanced fluorescence [J]. Physical Chemistry Chemical Physics,2013,15(45) :19537-19537.

    [3] [3] Katrova V, Hristova-Vasileva T, Atanasova A, et al. Optical properties of nanostructured bimetallic films from the Ag-In and Ag-Sb systems and their surface-enhanced fluorescence application[C]// Journal of Physics: Conference Series. IOP Publishing,2022,2240(1):012007.

    [4] [4] Dong C, Wang Y, Zhao X, et al. Chemical sensing and analysis with optical nanostructures[J]. Chemosensors,2023,11(9):497.

    [5] [5] Gao S, Zhou R, Samanta S, et al. Recent advances in plasmon-enhanced luminescence for biosensing and bioimaging[J]. Analytica Chimica Acta, 2023,1254:341086.

    [6] [6] Kochylas I, Dimitriou A, Apostolaki M-A, et al. Enhanced photoluminescence of R6G dyes from metal decorated silicon nanowires fabricated through metal assisted chemical etching[J]. Materials,2023,16(4):1386.

    [7] [7] An P, Luo B, Zhan X, et al. CRISPR/Cas12a bio-assay integrated with metal-organic framework based enhanced fluorescent labels for ultrasensitive detection of circulating tumor DNA[J]. Sensors and Actuators B: Chemical,2023,383:133623.

    [8] [8] Peixoto L P, Santos J F, Andrade GF, et al. Surface enhanced fluorescence immuno-biosensor based on gold nanorods[J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2023,284:121753.

    [9] [9] Trofymchuk K, Ko?ataj K, Glembockyte V, et al. Gold nanorod DNA origami antennas for 3 orders of magnitude fluorescence enhancement in NIR[J]. ACS nano,2023,17(2) :1327-1334.

    [10] [10] Yu Q, Ke C, Wu Y, et al. Competitive fluorescent immunosensor based on FRET between core-shell graphene quantum dots and Au nanoparticles for ultra-sensitive detection of Ochratoxin A[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2024:133182.

    [11] [11] Zhao Y, Tong R J, Xia F, et al. Current status of optical fiber biosensor based on surface plasmon resonance[J]. Biosensors and Bioelectronics,2019,142:111505.

    [12] [12] Klantsataya E, Francois A, Ebendorff-Heidepriem H, et al.Effect of surface roughness on metal enhanced fluorescence in planar substrates and optical fibers[J]. Opt Mater Express,2016,6(6):2128-38.

    [13] [13] Hsieh B Y, Chang Y F, Ng M Y, et al. Localized surface plasmon coupled fluorescence fiber-optic biosensor with gold nanoParticles[J]. Analytical Chemistry,2007,79(9):3487-93.

    [14] [14] Bertolotti M, Sibilia C, Guzman AM. Evanescent waves in optics:an introduction to plasmonics[M]. Cham:Springer,2017.

    [15] [15] Geddes C D, Lakowicz J R. Metal-enhanced fluorescence[J].Journal of Fluorescence, 2002,12(2):121-129.

    [16] [16] Ghatak A K, Thyagarajan K. An introduction to fiber optics[M]. Cambridge University Press, 1998.

    [17] [17] Ordal M A, Long L L, Bell R J, et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared[J]. Applied Ooptics, 1983,22(7):1099-1119.

    [18] [18] Ong B H, Yuan X, Tjin S C, et al. Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor[J]. Sensors and Actuators B: Chemical, 2006,114(2):1028-1034.

    [19] [19] Tabassum R, Gupta B D. SPR based fiber-optic sensor with enhanced electric field intensity and figure of merit using different single and bimetallic configurations[J]. Optics Communications, 2016,367:23-34.

    [20] [20] Schasfoort R B. Handbook of surface plasmon resonance[M].Royal Society of Chemistry,2017.

    [21] [21] Arbeloa I L. Flourescence self-quenching of Halofluorescein dyes[J]. Journal of Photochemistry, 1982,18(2):161-168.

    [22] [22] Arbela I L. Flourescence quantum yield evaluation: corrections for re-absorption and re-emission[J]. Journal of Photochemistry, 1980,14(2):97-105.

    [23] [23] Lakowicz JR. Radiative decay engineering: biophysical and biomedical applications[J]. Analytical Biochemistry,2001,298(1):1-24.

    [24] [24] Lakowicz JR, Shen Y, DAuria S, et al. Radiative decay engineering: 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer[J]. Analytical Biochemistry,2002,301(2):261-277.

    [25] [25] Pandey K K, Joshi H C, Pant T C. Migration effects on excitation energy transfer by decay analysis using a nanosecond fluorimeter[J]. Chemical Physics Letters, 1988,148(5):472-478.

    [26] [26] Liebermann T, Knoll W. Surface-plasmon field-enhanced fluorescence spectroscopy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2000,171(1-3):115-130.

    [27] [27] Neumann T, Johansson M L, Kambhampati D, et al. Surface-plasmon fluorescence spectroscopy [J]. Advanced Functional Materials,2002,12(9):575-586.

    Tools

    Get Citation

    Copy Citation Text

    ZHAO Jingtao, ZHANG Zhenxing, SUN Xiang, KONG Mei, ZHANG Rong. Research on surface-enhanced fluorescence characteristics of optical fiber SPR[J]. Optical Technique, 2024, 50(4): 508

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 29, 2023

    Accepted: --

    Published Online: Aug. 16, 2024

    The Author Email: Rong ZHANG (zhangrong@cust.edu.cn)

    DOI:

    Topics