Acta Laser Biology Sinica, Volume. 32, Issue 6, 502(2023)
CRISPR/Cas: Promising Technology for Virus Detectionand Antiviral Therapy
[1] [1] KHAMBHATI K, BHATTACHARJEE G, SINGH V. Current progress in CRISPR-based diagnostic platforms[J]. Journal of Cellular Biochemistry, 2019, 120(3): 2721-2725.
[2] [2] NAKATA A, AMEMURA M, MAKINO K. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome[J]. Journal of Bacteriology, 1989, 171(6): 3553-3556.
[3] [3] BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712.
[4] [4] CHARPENTIER E, RICHTER H, VAN DER OOST J, et al. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity[J]. FEMS Microbiology Reviews, 2015, 39(3): 428-441.
[5] [5] JACKSON S A, MCKENZIE R E, FAGERLUND R D, et al. CRISPR-Cas: adapting to change[J]. Science, 2017, 356(6333): eaal5056.
[6] [6] ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299): aaf5573.
[7] [7] ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759-771.
[8] [8] YAMADA M, WATANABE Y, GOOTENBERG J S, et al. Crystal structure of the minimal Cas9 from campylobacter jejuni reveals the molecular diversity in the CRISPR-Cas9 systems[J]. Molecular Cell, 2017, 65(6): 1109-1121.e3.
[9] [9] WANG M, ZHANG R, LI J. CRISPR/Cas systems redefine nucleic acid detection: principles and methods[J]. Biosensors and Bioelectronics, 2020, 165: 112430.
[10] [10] PARDEE K, GREEN A A, TAKAHASHI M K, et al. Rapid, low-cost detection of zika virus using programmable biomolecular components[J]. Cell, 2016, 165(5): 1255-1266.
[11] [11] ZHANG B, XIA Q, WANG Q, et al. Detecting and typing target DNA with a novel CRISPR-typing PCR (ctPCR) technique[J]. Analytical Biochemistry, 2018, 561: 37-46.
[12] [12] WANG X, XIONG E, TIAN T, et al. Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay[J]. ACS Nano, 2020, 14(2): 2497-2508.
[13] [13] GUK K, KEEM J O, HWANG S G, et al. A facile, rapid and sensitive detection of mrsa using a CRISPR-mediated DNA fish method, antibody-like dCas9/sgRNA complex[J]. Biosensors and Bioelectronics, 2017, 95: 67-71.
[14] [14] CHEN J S, MA E, HARRINGTON L B, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436-439.
[15] [15] DING X, YIN K, LI Z, et al. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay[J]. Nature Communications, 2020, 11(1): 4711.
[16] [16] LI S Y, CHENG Q X, WANG J M, et al. CRISPR-Cas12a-assisted nucleic acid detection[J]. Cell Discovery, 2018, 4(1): 20.
[17] [17] LI L, LI S, WU N, et al. HOLMESv2: a crispr-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation[J]. ACS Synthetic Biology, 2019, 8(10): 2228-2237.
[18] [18] DAI Y, SOMOZA R A, WANG L, et al. Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor[J]. Angewandte Chemie, 2019, 131(48): 17560-17566.
[19] [19] KELLNER M J, KOOB J G, GOOTENBERG J S, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases[J]. Nature Protocols, 2019, 14(10): 2986-3012.
[20] [20] LIU T Y, KNOTT G J, SMOCK D C, et al. Accelerated RNA detection using tandem CRISPR nucleases[J]. Nature Chemical Biology, 2021, 17(9): 982-988.
[21] [21] MYHRVOLD C, FREIJE C A, GOOTENBERG J S, et al. Field-deployable viral diagnostics using CRISPR-Cas13[J]. Science, 2018, 360(6387): 444-448.
[22] [22] ACKERMAN C M, MYHRVOLD C, THAKKU S G, et al. Massively multiplexed nucleic acid detection with Cas13[J]. Nature, 2020, 582(7811): 277-282.
[23] [23] ARIZTI-SANZ J, FREIJE C A, STANTON A C, et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2[J]. Nature Communications, 2020, 11(1): 5921.
[24] [24] NAJAH S, SAULNIER C, PERNODET J L, et al. Design of a generic CRISPR-Cas9 approach using the same sgRNA to perform gene editing at distinct loci[J]. BMC Biotechnology, 2019, 19: 1-8.
[25] [25] WANG Q, ZHANG B, XU X, et al. CRISPR-typing PCR (ctPCR), a new Cas9-based DNA detection method[J]. Scientific Reports, 2018, 8(1): 14126.
[26] [26] ZHANG Y, QIAN L, WEI W, et al. Paired design of dCas9 as a systematic platform for the detection of featured nucleic acid sequences in pathogenic strains[J]. ACS Synthetic Biology, 2017, 6(2): 211-216.
[27] [27] HAJIAN R, BALDERSTON S, TRAN T, et al. Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor[J]. Nature Biomedical Engineering, 2019, 3(6): 427-437.
[28] [28] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[29] [29] BROUGHTON J P, DENG X, YU G, et al. CRISPR-Cas12-based detection of SARS-CoV-2[J]. Nature Biotechnology, 2020, 38(7): 870-874.
[30] [30] PAPATHEODORIDIS G, THOMAS H, GOLNA C, et al. Addressing barriers to the prevention, diagnosis and treatment of hepatitis b and c in the face of persisting fiscal constraints in europe: report from a high level conference[J]. Journal of Viral Hepatitis, 2016, 23: 1-12.
[31] [31] BROUGHTON J P, DENG X, YU G, et al. Rapid detection of 2019 novel coronavirus SARS-CoV-2 using a CRISPR-based detectr lateral flow assay[J]. MedRxiv, 2020. doi: https:// doi.org/10.1101/2020.03.06.20032334.
[32] [32] CHEN Y, XU X, WANG J, et al. Photoactivatable CRISPR/Cas12a strategy for one-pot detectr molecular diagnosis[J]. Analytical Chemistry, 2022, 94(27): 9724-9731.
[33] [33] HADIDI A. Next-generation sequencing and CRISPR/Cas13 editing in viroid research and molecular diagnostics[J]. Viruses, 2019, 11(2): 120.
[34] [34] GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al. Nucleic acid detection with CRISPR-Cas13a/c2c2[J]. Science, 2017, 356(6336): 438-442.
[35] [35] LEE R A, PUIG H D, NGUYEN P Q, et al. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of plasmodium species in symptomatic and asymptomatic malaria[J]. Proceedings of the National Academy of Sciences, 2020, 117(41): 25722-25731.
[36] [36] GOOTENBERG J S, ABUDAYYEH O O, KELLNER M J, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[J]. Science, 2018, 360(6387): 439-444.
[37] [37] DATTA S, CHATTERJEE S, VEER V, et al. Molecular biology of the hepatitis B virus for clinicians[J]. Journal of Clinical and Experimental Hepatology, 2012, 2(4): 353-365.
[38] [38] LIN S R, YANG H C, KUO Y T, et al. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo[J]. Molecular Therapy-nucleic Acids, 2014, 3(8): e186.
[39] [39] WANG J, XU Z W, LIU S, et al. Dual grnas guided CRISPR/Cas9 system inhibits hepatitis B virus replication[J]. World Journal of Gastroenterology, 2015, 21(32): 9554.
[40] [40] SEEGER C, SOHN J A. Complete spectrum of CRISPR/Cas9-induced mutations on HBV cccDNA[J]. Molecular Therapy, 2016, 24(7): 1258-1266.
[41] [41] BI Y, SUN L, GAO D, et al. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases[J]. PLoS Pathogens, 2014, 10(5): e1004090.
[42] [42] ROEHM P C, SHEKARABI M, WOLLEBO H S, et al. Inhibition of HSV-1 replication by gene editing strategy[J]. Scientific Reports, 2016, 6(1): 23146.
[43] [43] WANG J, QUAKE S R. RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection[J]. Proceedings of the National Academy of Sciences, 2014, 111(36): 13157-13162.
[44] [44] YUEN K S, CHAN C P, WONG N H M, et al. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells[J]. Journal of General Virology, 2015, 96(3): 626-636.
[45] [45] VAN DIEMEN F R, KRUSE E M, HOOYKAAS M J, et al. CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent infections[J]. PLoS Pathogens, 2016, 12(6): e1005701.
[46] [46] KENNEDY E M, KORNEPATI A V, GOLDSTEIN M, et al. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease[J]. Journal of Virology, 2014, 88(20): 11965-11972.
[47] [47] ZHEN S, HUA L, TAKAHASHI Y, et al. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9[J]. Biochemical and Biophysical Research Communications, 2014, 450(4): 1422-1426.
[48] [48] HU Z, YU L, ZHU D, et al. Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells[J]. BioMed Research International, 2014, 2014: 612823.
[49] [49] EBINA H, MISAWA N, KANEMURA Y, et al. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus[J]. Scientific Reports, 2013, 3(1): 2510.
[50] [50] LIAO H K, GU Y, DIAZ A, et al. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells[J]. Nature Communications, 2015, 6(1): 6413.
[51] [51] LEBBINK R J, DE JONG D C, WOLTERS F, et al. A combinational CRISPR/Cas9 gene-editing approach can halt HIV replication and prevent viral escape[J]. Scientific Reports, 2017, 7(1): 41968.
[52] [52] YIN C, ZHANG T, QU X, et al. In vivo excision of HIV-1 provirus by saCas9 and multiplex single-guide RNAs in animal models[J]. Molecular Therapy, 2017, 25(5): 1168-1186.
[53] [53] WANG W, YE C, LIU J, et al. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection[J]. PloS One, 2014, 9(12): e115987.
[54] [54] LIU Z, CHEN S, JIN X, et al. Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4+T cells from HIV-1 infection[J]. Cell & Bioscience, 2017, 7: 1-15.
[55] [55] WHITLEY R J, ROIZMAN B. Herpes simplex virus infections[J]. The Lancet, 2001, 357(9267): 1513-1518.
[56] [56] ARMSTRONG E P. Prophylaxis of cervical cancer and related cervical disease: a review of the cost-effectiveness of vaccination against oncogenic HPV types[J]. Journal of Managed Care Pharmacy, 2010, 16(3): 217-230.
[57] [57] CHUN T W, STUYVER L, MIZELL S B, et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy[J]. Proceedings of the National Academy of Sciences, 1997, 94(24): 13193-13197.
[58] [58] HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6): 1262-1278.
[59] [59] WALKER-SPERLING V E, POHLMEYER C W, TARWATER P M, et al. The effect of latency reversal agents on primary CD8+?T cells: implications for shock and kill strategies for human immunodeficiency virus eradication[J]. EBioMedicine, 2016, 8: 217-229.
[60] [60] KIM V, MEARS B M, POWELL B H, et al. Mutant Cas9-transcriptional activator activates HIV-1 in U1 cells in the presence and absence of ltr-specific guide RNAs[J]. Matters, 2017, 2017: 10.19185/matters.201611000027.
[61] [61] ABUDAYYEH O O, GOOTENBERG J S, ESSLETZBICHLER P, et al. RNA targeting with CRISPR-Cas13[J]. Nature, 2017, 550(7675): 280-284.
[62] [62] COX D B, GOOTENBERG J S, ABUDAYYEH O O, et al. RNA editing with CRISPR-Cas13[J]. Science, 2017, 358(6366): 1019-1027.
[63] [63] FREIJE C A, MYHRVOLD C, BOEHM C K, et al. Programmable inhibition and detection of RNA viruses using Cas13[J]. Molecular Cell, 2019, 76(5): 826-837.e11.
[64] [64] LI H, WANG S, DONG X, et al. CRISPR-Cas13a cleavage of dengue virus NS3 gene efficiently inhibits viral replication[J]. Molecular Therapy - Nucleic Acids, 2020, 19: 1460-1469.
[65] [65] ABBOTT T R, DHAMDHERE G, LIU Y, et al. Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza[J]. Cell, 2020, 181(4): 865-876.e12.
[66] [66] KONERMANN S, LOTFY P, BRIDEAU N J, et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors[J]. Cell, 2018, 173(3): 665-676.e14.
[67] [67] TSAI S Q, WYVEKENS N, KHAYTER C, et al. Dimeric CRISPR RNA-guided foki nucleases for highly specific genome editing[J]. Nature Biotechnology, 2014, 32(6): 569-576.
[68] [68] RAN F A, HSU P D, LIN C Y, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J]. Cell, 2013, 154(6): 1380-1389.
[69] [69] VAKULSKAS C A, DEVER D P, RETTIG G R, et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells[J]. Nature Medicine, 2018, 24(8): 1216-1224.
[70] [70] KIM S, KOO T, JEE H G, et al. CRISPR RNAs trigger innate immune responses in human cells[J]. Genome Research, 2018, 28(3): 367-373.
[71] [71] HOU P, CHEN S, WANG S, et al. Genome editing of CXCR4 by CRISPR/Cas9 confers cells resistant to HIV-1 infection[J]. Scientific Reports, 2015, 5(1): 15577.
[72] [72] MENDOZA P, GRUELL H, NOGUEIRA L, et al. Combination therapy with anti-HIV-1 antibodies maintains viral suppression[J]. Nature, 2018, 561(7724): 479-484.
[73] [73] QIN W, DION S L, KUTNY P M, et al. Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease[J]. Genetics, 2015, 200(2): 423-430.
[74] [74] WANG G, ZHAO N, BERKHOUT B, et al. CRISPR-Cas based antiviral strategies against HIV-1[J]. Virus Research, 2018, 244: 321-332.
[75] [75] ?AHUI PALOMINO R A, ZICARI S, VANPOUILLE C, et al. Vaginal lactobacillus inhibits HIV-1 replication in human tissues ex vivo[J]. Frontiers in Microbiology, 2017, 8: 906.
Get Citation
Copy Citation Text
LIANG Ruimin, ZOU Yingying, QIU Ye. CRISPR/Cas: Promising Technology for Virus Detectionand Antiviral Therapy[J]. Acta Laser Biology Sinica, 2023, 32(6): 502
Received: Oct. 31, 2023
Accepted: --
Published Online: Feb. 2, 2024
The Author Email: