NUCLEAR TECHNIQUES, Volume. 47, Issue 8, 080502(2024)

Prediction of interfacial area concentration based on interpretable neural network

Yuhao ZHOU1,3, Wangtao XU1,3, Li LIU1,3, Longxiang ZHU1,2,3、*, Luteng ZHANG1,3, and Liangming PAN1,3
Author Affiliations
  • 1Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
  • 2Postdoctoral Station of Power Engineering and Engineering Thermophysics at Chongqing University, Chongqing 400044, China
  • 3Department of Nuclear Engineering and Technology, Chongqing University, Chongqing 400044, China
  • show less
    Figures & Tables(10)
    Diagram of double hidden layer neural network
    Comparison between predicted and experimental values for 5 different input features(a) Input features are jf and jg, (b) Input features are jf and α, (c) Input features are jf/jg and α, (d) Input features are jf, jg and α, (e) Input features are lg(jf), lg(jg) and lg(α)
    Relationship between value and flow pattern division (color online)
    First layer calculation results of three input features
    • Table 1. The parameter range of training data

      View table
      View in Article

      Table 1. The parameter range of training data

      作者Author年份Year截面平均数据量Data sizejf / m∙s-1jg / m∙s-1管道直径Geometry / mm
      Worosz et al.[5]2015920.18~0.2950.8
      Shen et al.[14]2012270.051~0.310.013~0.373200
      Dang[15]2017150.3~1.00.2~1025.4
      Schlegel et al.[16]2012160.39~10.19~3.06152,203
      Wang et al.[17]2017101.25~2.140.08~1125.4
      Wang et al.[18]2020240.5~20.092~5.0425.4
      Qiao et al.[19]20171240.108~0.28450.8
      Smith et al.[20]201290.30.15~1152
      Smith et al.[21]2012150.05~1.030.052~8102,152
    • Table 2. Prediction accuracy of different input feature combinations

      View table
      View in Article

      Table 2. Prediction accuracy of different input feature combinations

      序号Number输入特征Input features预测正确率Prediction accuracy / %
      1jfjg64.23
      2jfα80.29
      3jf/jgα63.50
      4jfjgα90.51
      5lgjflgjglgα95.62
    • Table 3. Coefficient index of existing interfacial area correlation

      View table
      View in Article

      Table 3. Coefficient index of existing interfacial area correlation

      作者Authorσ/ρf指数σ/ρf indexα指数α indexε, jfjg指数ε, jf, jg index
      Hibiki, Ishii[23]-0.50.8470.070 7(ε)
      Millies et al.[24]-0.60.830.4(ε)
      Kocamustafaogullariet al.[25]-0.330.780.22(ε)
      Tabei et al.[26]0.8470(ε)
      Calderbank[27]-0.330.7750.125(jg)
      Serizawa, Kataoka[28]0.870.2(jf)
      Viswanathan[29]-0.61-0.085(jg)
      Akita, Yoshida[30]-0.510.12(jg)
    • Table 4. Comparison of mean and variance before and after logarithmic transformation

      View table
      View in Article

      Table 4. Comparison of mean and variance before and after logarithmic transformation

      jgjflgjglgjf
      平均值Average1.2221.121-0.408-0.176
      方差Variance5.7481.2030.4090.240
    • Table 5. Size of neural network training process matrix

      View table
      View in Article

      Table 5. Size of neural network training process matrix

      输入矩阵Input matrix权重矩阵Weight matrix输出矩阵Output matrix
      第一次参数计算First parameter calculation1×33×321×32
      第一次参数计算Second parameter calculation1×3232×321×32
      第一次参数计算Third parameter calculation1×3232×11×1
    • Table 6. Calculated and biased b3 values before each layer

      View table
      View in Article

      Table 6. Calculated and biased b3 values before each layer

      隐藏层1前Before hidden layer 1 i=132W1X隐藏层2前Before hidden layer 2 i=132W2X

      输出层前Before output layer

      W3X

      偏置Biasb3
      对数变换Logarithmic transformation88.319252.9090.9470.154
      未对数变换Non-logarithmic transformation-0.0088.494-0.2920.639
    Tools

    Get Citation

    Copy Citation Text

    Yuhao ZHOU, Wangtao XU, Li LIU, Longxiang ZHU, Luteng ZHANG, Liangming PAN. Prediction of interfacial area concentration based on interpretable neural network[J]. NUCLEAR TECHNIQUES, 2024, 47(8): 080502

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: NUCLEAR PHYSICS, INTERDISCIPLINARY RESEARCH

    Received: Mar. 15, 2024

    Accepted: --

    Published Online: Sep. 23, 2024

    The Author Email: ZHU Longxiang (朱隆祥)

    DOI:10.11889/j.0253-3219.2024.hjs.47.080502

    Topics