Journal of Atmospheric and Environmental Optics, Volume. 20, Issue 2, 158(2025)

Inversion method of atmospheric CO2 vertical profiles based on near-infrared laser heterodyne spectroscopy

LI Renshi1,2, DENG Hao2、*, KAN Ruifeng2, YANG Chenguang3, LIU Hao2, XU Zhenyu2、**, and ZHANG Xianyi1、***
Author Affiliations
  • 1School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
  • 2Key laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Science, Hefei 230031, China
  • 3Institute of Deep-sea Science and Engineering, Chinese Academy of Science, Sanya 572000, China
  • show less
    References(29)

    [1] Ghysels M, Durry G, Amarouche N et al. A lightweight balloon-borne laser diode sensor for the in-situ measurement of CO2 at 2.68 micron in the upper troposphere and the lower stratosphere[J]. Applied Physics B, 107, 213-220(2012).

    [2] Yao L, Liu W Q, Liu J G et al. Measurements of CO2 concentration profile in troposphere based on balloon-borne TDLAS system[J]. Spectroscopy and Spectral Analysis, 35, 2787-2791(2015).

    [3] Roche S, Strong K, Wunch D et al. Retrieval of atmospheric CO2 vertical profiles from ground-based near-infrared spectra[J]. Atmospheric Measurement Techniques, 14, 3087-3118(2021).

    [4] Shan C G, Wang W, Liu C et al. Retrieval of vertical profiles and tropospheric CO2 columns based on high-resolution FTIR over Hefei, China[J]. Optics Express, 29, 4958-4977(2021).

    [5] Shan C G. Spectral Measurement of Greenhouse Gases by Laser Heterodyne Spectrometer and Retrieval Algorithm[D](2019).

    [6] Delahaigue A, Courtois D, Thiebeaux C et al. Atmospheric laser heterodyne detection[J]. Infrared Physics & Technology, 37, 7-12(1996).

    [7] Menzies R T, Shumate M S. Remote measurements of ambient air pollutants with a bistatic laser system[J]. Applied Optics, 15, 2080-2084(1976).

    [8] Menzies R T, Seals R K. Ozone monitoring with an infrared heterodyne radiometer[J]. Science, 197, 1275-1277(1977).

    [9] Schmülling F, Klumb B, Harter M et al. High-sensitivity mid-infrared heterodyne spectrometer with a tunable diode laser as a local oscillator[J]. Applied Optics, 37, 5771-5776(1998).

    [10] Mumma M, Kostiuk T, Cohen S et al. Infrared heterodyne spectroscopy of astronomical and laboratory sources at 8.5 µm[J]. Nature, 253, 514-516(1975).

    [11] Sonnabend G, Wirtz D, Vetterle V et al. High-resolution observations of Martian non-thermal CO2 emission near 10 μm with a new tuneable heterodyne receiver[J]. Astronomy & Astrophysics, 435, 1181-1184(2005).

    [12] Weidmann D, Reburn W J, Smith K M. Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies[J]. The Review of Scientific Instruments, 78, 073107(2007).

    [13] Weidmann D, Wysocki G. High-resolution broadband (> 100 cm-1) infrared heterodyne spectro-radiometry using an external cavity quantum cascade laser[J]. Optics Express, 17, 248(2008).

    [14] Nakagawa H, Aoki S, Sagawa H et al. IR heterodyne spectrometer MILAHI for continuous monitoring observatory of Martian and Venusian atmospheres at Mt. Haleakalā, Hawaii[J]. Planetary and Space Science, 126, 34-48(2016).

    [15] Hoffmann A, Macleod N A, Huebner M et al. Thermal infrared laser heterodyne spectroradiometry for solar occultation atmospheric CO2 measurements[J]. Atmospheric Measurement Techniques, 9, 5975-5996(2016).

    [16] Weidmann D, Perrett B J, MacLeod N A et al. Hollow waveguide photomixing for quantum cascade laser heterodyne spectro-radiometry[J]. Optics Express, 19, 9074-9085(2011).

    [17] Wilson E L, McLinden M L, Miller J H et al. Miniaturized laser heterodyne radiometer for measurements of CO2 in the atmospheric column[J]. Applied Physics B, 114, 385-393(2014).

    [18] Melroy H R, Wilson E L, Clarke G B et al. Autonomous field measurements of CO2 in the atmospheric column with the miniaturized laser heterodyne radiometer (Mini-LHR)[J]. Applied Physics B, 120, 609-615(2015).

    [19] Wilson E L, DiGregorio A J, Villanueva G et al. A portable miniaturized laser heterodyne radiometer (mini-LHR) for remote measurements of column CH4 and CO2[J]. Applied Physics B, Laser and Optics, 125, 11(2019).

    [20] Wilson E L, DiGregorio A J, Riot V J et al. A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing CubeSat[J]. Measurement Science and Technology, 28, 035902(2017).

    [21] Wang J J, Sun C Y, Wang G S et al. A fibered near-infrared laser heterodyne radiometer for simultaneous remote sensing of atmospheric CO2 and CH4[J]. Optics and Lasers in Engineering, 129, 106083(2020).

    [22] Deng H, Yang C G, Wang W et al. Near infrared heterodyne radiometer for continuous measurements of atmospheric CO2 column concentration[J]. Infrared Physics & Technology, 101, 39-44(2019).

    [23] Parvitte B, Zeninari V, Thiebeaux C et al. Infrared laser heterodyne systems[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60, 1193-1213(2004).

    [24] Lu X J, Cao Z S, Tan T et al. Instrument line shape function of laser heterodyne spectrometer[J]. Acta Physica Sinica, 68, 136-142(2019).

    [25] Shen F J. Development of a Laser Heterodyne Radiometer for Atmospheric Remote Sensing[D](2019).

    [26] Deng H, Yang C, Xu Z et al. Development of a laser heterodyne spectroradiometer for high-resolution measurements of CO2, CH4, H2O and O2 in the atmospheric column[J]. Optics Express, 29, 2003-2013(2021).

    [27] Rodgers C D[M]. Inverse Methods for Atmospheric Sounding: Theory and Practice(2000).

    [28] Clough S A, Iacono M J, Moncet J L et al. Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor[J]. Journal of Geophysical Research: Atmospheres, 97, 15761-15785(1992).

    [29] Clough S A, Iacono M J. Line-by-line calculation of atmospheric fluxes and cooling rates: 2. Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons[J]. Journal of Geophysical Research: Atmospheres, 1995 100, 16519-16535.

    Tools

    Get Citation

    Copy Citation Text

    Renshi LI, Hao DENG, Ruifeng KAN, Chenguang YANG, Hao LIU, Zhenyu XU, Xianyi ZHANG. Inversion method of atmospheric CO2 vertical profiles based on near-infrared laser heterodyne spectroscopy[J]. Journal of Atmospheric and Environmental Optics, 2025, 20(2): 158

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 20, 2022

    Accepted: --

    Published Online: May. 30, 2025

    The Author Email: Hao DENG (hdeng@aiofm.ac.cn), Zhenyu XU (zyxu@aiofm.ac.cn), Xianyi ZHANG (xyzhang@mail.ahnu.edu.cn)

    DOI:10.3969/j.issn.1673-6141.2025.02.004

    Topics