Laser & Optoelectronics Progress, Volume. 57, Issue 22, 221004(2020)
Low-Grade Gliomas MR Image Segmentation Based on Conditional Generative Adversarial Networks
[1] Ostrom Q T, Gittleman H, Fulop J et al. --2012[J]. Neuro-Oncology, 2015, 17(suppl 4): iv1-iv62.(2008).
[6] Buda M, Saha A, Mazurowski M A. Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm[J]. Computers in Biology and Medicine, 109, 218-225(2019).
[7] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]. ∥Navab N, Hornegger J, Wells W, et al. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science. Cham: Springer, 9351, 234-241(2015).
[8] Greenspan H, van Ginneken B, Summers R M. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique[J]. IEEE Transactions on Medical Imaging, 35, 1153-1159(2016).
[13] Goodfellow I, Pouget-Abadie J, Mirza M et al[2020-01-02]. Generative adversarial nets [2020-01-02].https:∥arxiv., org/pdf/1406, 2661.
[14] Xue Y, Xu T, Zhang H et al. SegAN: adversarial network with multi-scale L1loss for medical image segmentation[J]. Neuroinformatics, 16, 383-392(2018).
[15] Mirza M, Osindero S[2020-01-03]. Conditional generative adversarial nets [2020-01-03].https:∥arxiv., org/pdf/1411, 1784.
Get Citation
Copy Citation Text
Lingmei Ai, Kangzhen Shi. Low-Grade Gliomas MR Image Segmentation Based on Conditional Generative Adversarial Networks[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221004
Category: Image Processing
Received: Jan. 15, 2020
Accepted: Apr. 1, 2020
Published Online: Oct. 24, 2020
The Author Email: Lingmei Ai (almsac@163.com), Kangzhen Shi (almsac@163.com)