Chinese Optics Letters, Volume. 19, Issue 7, 071901(2021)
In-situ modal inspection based on transverse second harmonic generation in single CdS nanobelt
[1] E. Li, X. Wang, C. Zhang. Fiber-optic temperature sensor based on interference of selective higher-order modes. Appl. Phys. Lett., 89, 091119(2006).
[2] L. Li, Q. Lou, J. Zhou, J. Dong, Y. Wei, J. Li. High power low-order modes operation of a multimode fiber laser. Chin. Opt. Lett., 5, 221(2007).
[3] N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545(2013).
[4] G. Labroille, B. Denolle, P. Jian, P. Genevaux, N. Treps, J.-F. Morizur. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion. Opt. Express, 22, 15599(2014).
[5] J. E. Hoffman, F. K. Fatemi, G. Beadie, S. L. Rolston, L. A. Orozco. Rayleigh scattering in an optical nanofiber as a probe of higher-order mode propagation. Optica, 2, 416(2015).
[6] V. G. T. A. Maimaiti, M. Sergides, I. Gusachenko, S. N. Chormaic. Higher order microfiber modes for dielectric particle trapping and propulsion. Sci. Rep., 5, 9077(2015).
[7] X. Zhang, R. Chen, Y. Zhou, H. Ming, A. Wang. Mode selective coupler for optical vortices generation. Chin. Opt. Lett., 15, 030008(2017).
[8] Y. Huang, F. Shi, T. Wang, X. Liu, X. Zeng, F. Pang, T. Wang, P. Zhou. High-order mode Yb-doped fiber lasers based on mode-selective couplers. Opt. Express, 26, 19171(2018).
[9] Q. Yuan, L. Fang, Q. Zhao, Y. Wang, B. Mao, V. Khayrudinov, H. Lipsanen, Z. Sun, J. Zhao, X. Gan. Mode couplings of a semiconductor nanowire scanning across a photonic crystal nanocavity. Chin. Opt. Lett., 17, 062301(2019).
[10] Z. Song, X. Yue, Y. Luo, H. Li, Y. Zhao. Absorption saturation measurement using the tapered optical nanofiber in a hot cesium vapor. Chin. Opt. Lett., 17, 031901(2019).
[11] Y. Zhang, H. Li, C. Dai, L. Xu, C. Gu, W. Chen, Y. Zhu, P. Yao, Q. Zhan. All-fiber high-order mode laser using a metal-clad transverse mode filter. Opt. Express, 26, 29679(2018).
[12] K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, E. Hadji. Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides. Appl. Phys. Lett., 93, 251103(2008).
[13] F. Gesuele, C. X. Pang, G. Leblond, S. Blaize, A. Bruyant, P. Royer, R. Deturche, P. Maddalena, G. Lerondel. Towards routine near-field optical characterization of silicon-based photonic structures: an optical mode analysis in integrated waveguides by transmission AFM-based SNOM. Physica E, 41, 1130(2009).
[14] J. I. Ziegler, M. W. Pruessner, B. S. Simpkins, D. A. Kozak, D. Park, F. K. Fatemi, T. H. Stievater. 3-D near-field imaging of guided modes in nanophotonic waveguides. Nanophotonics, 6, 1141(2017).
[15] G. P. Agrawal. Fiber-Optic Communication Systems(2010).
[16] B. Chen, Q. Bao, L. Tong. Direct observation of multimode interference in rare-earth doped micro/nanofibers. Opt. Express, 27, 26728(2019).
[17] R. Normandin, G. I. Stegeman. Picosecond signal processing with planar, nonlinear integrated optics. Appl. Phys. Lett., 36, 253(1980).
[18] R. Fischer, D. N. Neshev, S. M. Saltiel, A. A. Sukhorukov, W. Krolikowski, Y. S. Kivshar. Monitoring ultrashort pulses by transverse frequency doubling of counterpropagating pulses in random media. Appl. Phys. Lett., 91, 031104(2007).
[19] C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. J. Moss. Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide. Nat. Commun., 5, 3246(2014).
[20] H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, Y. R. Shen. Single nanowire optical correlator. Nano. Lett., 14, 3487(2014).
[21] F. Gu, L. Zhang, G. Wu, Y. Zhu, H. Zeng. Sub-bandgap transverse frequency conversion in semiconductor nano-waveguides. Nanoscale, 6, 12371(2014).
[22] C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, L. Tong. Single CdTe nanowire optical correlator for femtojoule pulses. Nano. Lett., 16, 4807(2016).
[23] S. K. Kurtz, T. T. Perry. A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys., 39, 3798(1968).
[24] I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, R. Ito. Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B., 14, 2268(1997).
[25] X. Huang, S. Dai, P. Xu, Y. Wang, Q. Yang, Y. Zhang, M. Xiao. Resonant and nonresonant second-harmonic generation in a single cadmium sulfide nanowire. Chin. Opt. Lett., 15, 061901(2017).
[26] A. M. Morales, C. M. Lieber. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 279, 208(1998).
[27] S. Kar, S. Chaudhuri. Cadmium sulfide one-dimensional nanostructures: synthesis, characterization and application. Synth. React. Inorg. M., 36, 289(2006).
[28] C. Xin, H. Wu, Y. Xie, S. Yu, N. Zhou, Z. Shi, X. Guo, L. Tong. CdTe microwires as mid-infrared optical waveguides. Opt. Express, 26, 10944(2018).
[29] D. Vakhshoori, S. Wang. Integrable semiconductor optical correlator, parametric spectrometer for communication systems. J. Lightwave Technol., 9, 906(1991).
[30] R. W. Boyd. Nonlinear Optics(1992).
[31] X. Guo, Y. Ying, L. Tong. Photonic nanowires: from subwavelength waveguides to optical sensors. Accounts Chem. Res., 47, 656(2014).
[32] X. Wu, L. Tong. Optical microfibers and nanofibers. Nanophotonics, 2, 407(2013).
Get Citation
Copy Citation Text
Chenguang Xin, Jie Qi, Rui Zhang, Li Jin, Yanru Zhou, "In-situ modal inspection based on transverse second harmonic generation in single CdS nanobelt," Chin. Opt. Lett. 19, 071901 (2021)
Category: Nonlinear Optics
Received: Aug. 31, 2020
Accepted: Dec. 5, 2020
Published Online: Mar. 22, 2021
The Author Email: Chenguang Xin (xincg@nuc.edu.cn), Yanru Zhou (zhouyanru@nuc.edu.cn)