Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 11, 1525(2021)
Lightweight mask detection algorithm based on improved YOLOv4-tiny
[1] [1] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
[2] [2] REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517-6525.
[3] [3] REDMON J, FARHADI A. Yolov3: an incremental improvement [J]. arXiv: 1804.02767, 2018.
[4] [4] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection [J]. arXiv: 2004.10934, 2020.
[5] [5] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Scaled-YOLOv4: scaling cross stage partial network [J]. arXiv: 2011.08036,2020.
[6] [6] GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1): 142-158.
[7] [7] GIRSHICK R. Fast R-CNN [C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1440-1448.
[8] [8] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[9] [9] CABANI A, HAMMOUDI K, BENHABILES H, et al. MaskedFace-Net–a dataset of correctly/incorrectly masked face images in the context of COVID-19 [J]. Smart Health, 2021, 19: 100144.
[10] [10] WANG Z Y, WANG G C, HUANG B J, et al. Masked face recognition dataset and application [J]. arXiv: 2003.09093, 2020.
[13] [13] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context [C]//13th European Conference on Computer Vision. Zurich: Springer, 2014: 740-755.
[14] [14] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[15] [15] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768.
[16] [16] LIN T Y, DOLLR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944.
[17] [17] MLLER R, KORNBLITH S, HINTON G. When does label smoothing help? [J]. arXiv: 1906.02629, 2019.
[18] [18] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020: 1571-1580.
[19] [19] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
[20] [20] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]//14th European Conference on Computer Vision. Amsterdam: Springer, 2016: 21-37.
[21] [21] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [J]. arXiv: 1409.1556, 2014.
Get Citation
Copy Citation Text
ZHU Jie, WANG Jian-li, WANG Bin. Lightweight mask detection algorithm based on improved YOLOv4-tiny[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(11): 1525
Category:
Received: Mar. 1, 2021
Accepted: --
Published Online: Dec. 1, 2021
The Author Email: