Chinese Optics Letters, Volume. 19, Issue 8, 081404(2021)
Spectroscopic and laser properties of Er3+, Pr3+ co-doped LiYF4 crystal Editors' Pick
[1] K. Scholle, S. Lamrini, P. Koopmann, P. Fuhrberg. 2 µm Laser Sources and Their Possible Applications(2010).
[2] A. Godard. Infrared (2–12 µm) solid-state laser sources: a review. Comptes Rendus Physique, 8, 1100(2007).
[3] Z. L. Zhan, X. Z. Zhang, W. Q. Guo, S. S. Xie. Determination of ablation threshold of dental hard tissues irradiated with Er:YAG and Er,Cr:YSGG lasers. Chin. Opt. Lett., 11, 051701(2013).
[4] I. Breunig, D. Haertle, K. Buse. Continuous-wave optical parametric oscillators: recent developments and prospects. Appl. Phys. B, 105, 99(2011).
[5] L. I. Isaenko, A. P. Yelisseyev. Recent studies of nonlinear chalcogenide crystals for the mid-IR. Semicond. Sci. Technol., 31, 123001(2016).
[6] W. T. Carnall, P. R. Fields, K. Rajnak. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys., 49, 4424(1968).
[7] S. A. Payne, L. K. Smith, W. F. Krupke. Cross sections and quantum yields of the 3 µm emission for Er3+ and Ho3+ dopants in crystals. J. Appl. Phys., 77, 4274(1995).
[8] F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, I. M. Ranieri. Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals. J. Appl. Phys., 91, 624(2002).
[9] H. G. Gu, Z. P. Qin, G. Q. Xie, T. Hai, P. Yuan, J. G. Ma, L. J. Qian. Generation of 131 fs mode-locked pulses from 2.8 µm Er:ZBLAN fiber laser. Chin. Opt. Lett., 18, 031402(2020).
[10] S. Georgescu, O. Toma. Er:YAG three-micron laser: performances and limits. IEEE J. Sel. Top. Quantum Electron., 11, 682(2005).
[11] V. Lupei, S. Georgescu, V. Florea. On the dynamics of population inversion for 3 µm Er3+ lasers. IEEE J. Quantum Electron., 29, 426(1993).
[12] S. Georgescu, O. Toma, H. Totia. Intrinsic limits of the efficiency of erbium 3-µm lasers. IEEE J. Quantum Electron., 39, 722(2003).
[13] Y. Wang, Z. You, J. Li, Z. Zhu, E. Ma, C. Tu. Spectroscopic investigations of highly doped Er3+: GGG and Er3+/Pr3+: GGG crystals. J. Phys. D: Appl. Phys., 42, 215406(2009).
[14] J. Chen, D. Sun, J. Luo, H. Zhang, R. Dou, J. Xiao, Q. Zhang, S. Yin. Spectroscopic properties and diode end-pumped 2.79 µm laser performance of Er,Pr:GYSGG crystal. Opt. Express, 21, 23425(2013).
[15] Y. Chen, Q. Zhang, F. Peng, W. Liu, Y. He, R. Dou, H. Zhang, J. Luo, D. Sun. Growth, structure and radiation resistant properties of Er,Pr:GSAG laser crystals. Opt. Mater., 84, 172(2018).
[16] Z. Fang, D. Sun, J. Luo, H. Zhang, X. Zhao, C. Quan, L. Hu, M. Cheng, Q. Zhang, S. Yin. Thermal analysis and laser performance of a GYSGG/Cr,Er,Pr:GYSGG composite laser crystal operated at 2.79 µm. Opt. Express, 25, 21349(2017).
[17] R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, T. Y. Fan. Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range. J. Appl. Phys., 98, 103514(2005).
[18] J. Hu, H. Xia, H. Hu, X. Zhuang, Y. Zhang, H. Jiang, B. Chen. Enhanced 2.7 µm emission from diode-pumped Er3+/Pr3+ co-doped LiYF4 single crystal grown by Bridgman method. Mater. Res. Bull., 48, 2604(2013).
[19] G. S. Ofelt. Intensities of crystal spectra of rare-earth ions. J. Chem. Phys., 37, 511(1962).
[20] B. R. Judd. Optical absorption intensities of rare-earth ions. Phys. Rev., 127, 750(1962).
[21] D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell. Judd–Ofelt analysis of the Er3+(4f11) absorption intensities in phosphate glass: Er3+, Yb3+. J. Appl. Phys., 93, 2041(2003).
[22] X.-Y. Yu, H.-B. Chen, S.-J. Wang, Y.-F. Zhou, A.-H. Wu, S.-X. Dai. Growth and spectral properties of Er3+:LiYF4 single crystal. J. Inorg. Mater., 26, 923(2011).
[23] D. K. Sardar, S. Chandrasekharan, K. L. Nash, J. B. Gruber. Optical intensity analyses of Er3+:YAlO3. J. Appl. Phys., 104, 023102(2008).
[24] G. A. Kumar, R. Riman, S. C. Chae, Y. N. Jang. Synthesis and spectroscopic characterization of CaF2:Er3+ single crystal for highly efficient 1.53 µm amplification. J. Appl. Phys., 95, 3243(2004).
[25] Y. Tian, R. Xu, L. Hu, J. Zhang. Spectroscopic properties and energy transfer process in Er3+ doped ZrF4-based fluoride glass for 2.7 µm laser materials. Opt. Mater., 34, 308(2011).
[26] P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, K. V. Yumashev. Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at.%) Er:YSGG laser crystal. J. Lumin., 171, 226(2016).
[27] M. Tikerpae, S. D. Jackson, T. A. King. Theoretical comparison of Er3+-doped crystal lasers. J. Modern Opt., 45, 1269(1998).
[28] J. Koetke, G. Huber. Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals. Appl. Phys. B, 61, 151(1995).
[29] T. Jensen, A. Diening, G. Huber, B. H. T. Chai. Investigation of diode-pumped 2.8-µm Er:LiYF4 lasers with various doping levels. Opt. Lett., 21, 585(1996).
Get Citation
Copy Citation Text
Zhengda Sun, Feifei Wang, Haiping Xia, Hongkun Nie, Kejian Yang, Ruihua Wang, Jingliang He, Baitao Zhang, "Spectroscopic and laser properties of Er3+, Pr3+ co-doped LiYF4 crystal," Chin. Opt. Lett. 19, 081404 (2021)
Category: Lasers, Optical Amplifiers, and Laser Optics
Received: Dec. 3, 2020
Accepted: Feb. 2, 2021
Published Online: May. 8, 2021
The Author Email: Haiping Xia (hpxcm@nbu.edu.cn), Baitao Zhang (btzhang@sdu.edu.cn)