Photonics Research, Volume. 12, Issue 5, 995(2024)

High power cladding-pumped low quantum defect Raman fiber amplifier

Yang Zhang1, Jiangming Xu1,4、*, Junrui Liang1, Sicheng Li1, Jun Ye1,2,3, Xiaoya Ma1, Tianfu Yao1,2,3, Zhiyong Pan1,2,3, Jinyong Leng1,2,3, and Pu Zhou1,5、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
  • 4e-mail: jmxu1988@163.com
  • 5e-mail: zhoupu203@163.com
  • show less
    Figures & Tables(11)
    Measured Raman gain spectrum of the utilized phosphosilicate fiber.
    Schematic of the high power low quantum defect Raman fiber amplifier. PF, phosphosilicate fiber; QBH, quartz block head; PM, power meter; MMF, multimode fiber; OSA, optical spectrum analyzer. Inset, refractive index profile of the phosphosilicate fiber.
    (a) Maximum output powers and corresponding output spectra at different fiber lengths. (b) Spectral evolution and (c) power evolution characteristics of the low QD RFA under an optimized fiber length of 150 m. ASE, amplified spontaneous emission.
    (a) Highest temperature increment measured at the fiber coating of each RFA as a function of output power. (b) Thermal image of the gain fiber in the low QD RFA at 815 W signal power. (c) Thermal image of the gain fiber in the conventional RFA at 813 W signal power.
    (a) Calculated output power evolution characteristics in the low QD RFA; the scattered points are the corresponding experimental results. (b) Calculated longitudinal power distribution of the low QD RFA at pump power of 1.6 kW.
    Output powers of Raman signal, residual pump, and spontaneous Raman generation at (a) different seed powers and (b) different inner-cladding diameters.
    (a) Longitudinal heat load distribution along the phosphosilicate fiber in the two RFAs. (b) Temperature increment distribution in the low QD RFA and (c) conventional RFA operating at the same signal power of 1 kW.
    Integrated heat load in the two RFAs as a function of output power with (a) 150 m and (b) 50 m Raman fiber. (The solid line and dashed line represent the integrated heat load of the low QD RFA and the conventional RFA, respectively. The red, green, and blue lines represent the total heat load, propagation-loss-induced heat load, and QD-induced heat load, respectively.)
    Cross section of the triple-clad phosphosilicate fiber.
    • Table 1. Parameter Values in Power Evolution Analysis

      View table
      View in Article

      Table 1. Parameter Values in Power Evolution Analysis

      ParameterValue
      λ0,λ1,λ21066, 1080, 1118.5 nm
      α0,α1,α21.48, 1.40, 1.22 dB/km
      gR01,gR02,gR127×1014, 9.87×1014, 8×1014  m/W
      Acore,Aclad1065.35,3972.59  μm2
    • Table 2. Parameter Values in Heat Analysis

      View table
      View in Article

      Table 2. Parameter Values in Heat Analysis

      ParameterValue
      r1,r2,r3,r414.5, 28, 65, 125 μm
      κ1,κ2,κ3,κ4 [46]1.38, 1.38, 1.38, 0.2  W/(m·K)
      T0298.15 K
      h100  W/(m2·K)
    Tools

    Get Citation

    Copy Citation Text

    Yang Zhang, Jiangming Xu, Junrui Liang, Sicheng Li, Jun Ye, Xiaoya Ma, Tianfu Yao, Zhiyong Pan, Jinyong Leng, Pu Zhou, "High power cladding-pumped low quantum defect Raman fiber amplifier," Photonics Res. 12, 995 (2024)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Nov. 2, 2023

    Accepted: Mar. 6, 2024

    Published Online: May. 6, 2024

    The Author Email: Jiangming Xu (jmxu1988@163.com), Pu Zhou (zhoupu203@163.com)

    DOI:10.1364/PRJ.510057

    CSTR:32188.14.PRJ.510057

    Topics