Laser & Optoelectronics Progress, Volume. 61, Issue 12, 1228001(2024)

Autoencoder-Based Fusion Classification of Hyperspectral and LiDAR Data

Yibo Wang1... Song Dai2,*, Dongmei Song2, Guofa Cao1 and Jie Ren1 |Show fewer author(s)
Author Affiliations
  • 1Bureau of Geophysical Prospecting INC., China National Petroleum Corporation, Zhuozhou072750, Hebei, China
  • 2College of Ocean and Space Information, China University of Petroleum (East China), Qingdao 266580, Shandong, China
  • show less
    Figures & Tables(14)
    Flow chart of the network for fusing hyperspectral and LiDAR data based on an autoencoder
    CNN feature extraction module
    Autoencoder feature fusion module
    Visualization of the Houston dataset. (a) Pseudocolor image for the HIS; (b) gray-scale image for the LiDAR; (c) training data; (d) testing data
    Visualization of the Trento dataset. (a) Pseudocolor image for the HIS; (b) gray-scale image for the LiDAR; (c) training data; (d) testing data
    Houston data classification results. (a) Color composite image; (b) (1) (H+L); (c) (2) (H+L); (d) (3) (H+L); (e) (4) (H+L); (f) (5) (L); (g) (5) (H); (h) (5) (H+L)
    Trento data classification results. (a) Color composite image; (b) (1) (H+L); (c) (2) (H+L); (d) (3) (H+L); (e) (4) (H+L); (f) (5) (L); (g) (5) (H); (h) (5) (H+L)
    • Table 1. Description table of the parameters of the Houston and Trento dataset

      View table

      Table 1. Description table of the parameters of the Houston and Trento dataset

      DatasetHoustonTrento
      LocationHouston,Texas,USATrento,Italy
      Sensor typeHSILiDAR-based DSMHSILiDAR-based DSM
      Image size /pixel349×1905600×166
      Spatial resolution /m2.51
      Number of bands1441631
      Sensor nameITRES CASI 1500AISA EagleOptech ALTM 3100EA
    • Table 2. Number of training and testing samples for different feature classes in the Houston dataset

      View table

      Table 2. Number of training and testing samples for different feature classes in the Houston dataset

      No.ClassTrainTest
      Total283215029
      1health grass1981251
      2stressed grass1901254
      3synthetic grass192697
      4tress1881244
      5soil1861242
      6water182325
      7residential1961268
      8commercial1911244
      9road1931252
      10highway1911227
      11railway1811235
      12parking lot 11921233
      13parking lot 2184469
      14tennis court181428
      15running track187660
    • Table 3. Number of training and testing samples for different feature classes in the Trento dataset

      View table

      Table 3. Number of training and testing samples for different feature classes in the Trento dataset

      No.ClassTrainTest
      Total81930214
      1apple trees1294034
      2buildings1252903
      3ground105479
      4woods1549123
      5vineyard18410501
      6roads1223174
    • Table 4. Comparison table of results of ablation experiment evaluation

      View table

      Table 4. Comparison table of results of ablation experiment evaluation

      DatasetCNNAEAOA /%AAA /%Kappa
      Houston87.9890.110.8698
      88.5289.950.8759
      93.6694.200.9316
      Trento97.9296.190.9681
      94.1793.8892.22
      98.5897.740.9811
    • Table 5. Classification accuracy of different models on Houston data

      View table

      Table 5. Classification accuracy of different models on Houston data

      No.Class(1)(H+L)(2)(H+L)(3)(H+L)(4)(H+L)(5)(L)(5)(H)(5)(H+L)
      1health grass82.4383.1081.5894.4959.3582.8182.43
      2stressed grass82.0583.7083.6592.7826.4185.1597.27
      3synthetic grass99.80100.00100.0094.9038.0296.4497.43
      4tress92.8091.8693.0993.2077.9490.7299.53
      5soil98.4898.8699.9194.8031.91100.00100.00
      6water95.1095.1095.1086.0837.76100.0097.20
      7residential75.4780.0482.6589.4280.8887.5095.06
      8commercial46.9168.4781.2985.8083.5790.5096.49
      9road79.5384.8088.2986.3451.0984.0493.30
      10highway60.0449.1389.0086.9453.1967.0873.36
      11railway81.0280.2783.7890.6086.1594.9796.58
      12parking lot 185.4979.0690.3985.3151.3096.1598.08
      13parking lot 275.0971.5882.4687.4070.5390.5294.74
      14tennis court100.0099.60100.0084.4974.4999.6095.14
      15running track98.3198.5298.1094.7246.3098.3196.41
      AOA /%80.4981.9288.5290.1459.0189.1193.66
      AAA /%83.5084.2789.9589.8257.9390.9294.20
      Kappa0.78980.80450.87590.89730.56980.88290.9316
    • Table 6. Classification accuracy of different models on Trento data

      View table

      Table 6. Classification accuracy of different models on Trento data

      No.Class(1)(H+L)(2)(H+L)(3)(H+L)(4)(H+L)(5)(L)(5)(H)(5)(H+L)
      1apple trees88.6295.8188.1996.0199.6999.6299.61
      2buildings94.0496.9798.4988.6482.8393.5297.91
      3ground93.5396.6695.1998.0240.6491.4496.62
      4woods98.9099.3999.3099.6897.7799.6199.26
      5vineyard88.9682.2491.9699.4393.7599.9199.97
      6roads91.7586.5290.1493.5159.1482.7393.09
      AOA /%92.7791.3294.1797.3690.4697.2998.58
      AAA /%92.6392.9393.8895.8878.9794.4797.74
      Kappa0.95850.90420.92220.96460.87540.96390.9811
    • Table 7. Performance comparison of the proposed method applied to different training sample sizes

      View table

      Table 7. Performance comparison of the proposed method applied to different training sample sizes

      DatasetTraining sample rateAOA/%AAA/%Kappa
      Houston0.191.9390.240.9102
      0.1592.2091.770.9155
      0.294.2593.800.9377
      Trento0.199.3199.280.9908
      0.1599.4899.390.9931
      0.299.6499.490.9952
    Tools

    Get Citation

    Copy Citation Text

    Yibo Wang, Song Dai, Dongmei Song, Guofa Cao, Jie Ren. Autoencoder-Based Fusion Classification of Hyperspectral and LiDAR Data[J]. Laser & Optoelectronics Progress, 2024, 61(12): 1228001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: May. 9, 2023

    Accepted: Aug. 10, 2023

    Published Online: Jun. 17, 2024

    The Author Email: Song Dai (b22160011@s.upc.edu.cn)

    DOI:10.3788/LOP231262

    CSTR:32186.14.LOP231262

    Topics