Laser & Optoelectronics Progress, Volume. 61, Issue 12, 1228001(2024)
Autoencoder-Based Fusion Classification of Hyperspectral and LiDAR Data
Fig. 1. Flow chart of the network for fusing hyperspectral and LiDAR data based on an autoencoder
Fig. 4. Visualization of the Houston dataset. (a) Pseudocolor image for the HIS; (b) gray-scale image for the LiDAR; (c) training data; (d) testing data
Fig. 5. Visualization of the Trento dataset. (a) Pseudocolor image for the HIS; (b) gray-scale image for the LiDAR; (c) training data; (d) testing data
Fig. 6. Houston data classification results. (a) Color composite image; (b) (1) (H+L); (c) (2) (H+L); (d) (3) (H+L); (e) (4) (H+L); (f) (5) (L); (g) (5) (H); (h) (5) (H+L)
Fig. 7. Trento data classification results. (a) Color composite image; (b) (1) (H+L); (c) (2) (H+L); (d) (3) (H+L); (e) (4) (H+L); (f) (5) (L); (g) (5) (H); (h) (5) (H+L)
|
|
|
|
|
|
|
Get Citation
Copy Citation Text
Yibo Wang, Song Dai, Dongmei Song, Guofa Cao, Jie Ren. Autoencoder-Based Fusion Classification of Hyperspectral and LiDAR Data[J]. Laser & Optoelectronics Progress, 2024, 61(12): 1228001
Category: Remote Sensing and Sensors
Received: May. 9, 2023
Accepted: Aug. 10, 2023
Published Online: Jun. 17, 2024
The Author Email: Song Dai (b22160011@s.upc.edu.cn)
CSTR:32186.14.LOP231262